
Security and Performance Verification of Distributed
Authentication and Authorization Tools

A Dissertation

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

Electrical Engineering

by

Seok Bae Yun

May 2012

Accepted by:

Dr. Richard R. Brooks, Committee Chair

Dr. Haying Shen

Dr. Jill Gemmill

Abstract

Parallel distributed systems are widely used for dealing with massive data sets and

high performance computing. Securing parallel distributed systems is problematic. Cen-

tralized security tools are likely to cause bottlenecks and introduce a single point of failure.

In this paper, we introduce existing distributed authentication and authorization tools. We

evaluate the quality of the security tools by verifying their security and performance.

For security tool verification, we use process calculus and mathematical modeling

languages. Casper, Communicating Sequential Process (CSP) and Failure Divergence Re-

finement (FDR) to test for security vulnerabilities, Petri nets and Karp Miller trees are

used to find performance issues of distributed authentication and authorization methods.

Kerberos, PERMIS, and Shibboleth are evaluated. Kerberos is a ticket based dis-

tributed authentication service, PERMIS is a role and attribute based distributed autho-

rization service, and Shibboleth is an integration solution for federated single sign-on au-

thentication. We find no critical security and performance issues.

ii

Dedication

I would like to dedicate this master thesis to my father Hyo Hyun Yun, my mother

Byung Hee Han, and my brother Jeoung Bae Yun. There is no doubt in my mind that

without continued support and counsel from my family I could not have completed this

process.

iii

Acknowledgments

I would like to acknowledge the instruction and guidance of Dr. Richard R. Brooks.

Every recommendation of his was for the best interest of his graduate students. He has

given me a deep appreciation and detail of this subject.

I would also like to acknowledge the support and assistantship given me by Dr.

Haying Shen and Dr. Jill Gemmill. Especially, I appreciate that Dr. Gemmill had a review

on my modeling of security protocol models.

I would also like to thank my family for their encouragement and love throughout

my graduate study, and their belief in me. Also, heartfelt thanks to all my friends, lab

colleagues and the faculty of the ECE department. Finally, all works on this thesis is

supported by the National Science Foundation, under grant NSF-OCI 1064230 EAGER:

Collaborative Research: A Peer-to-Peer based Storage System for High-End Computing,

and ORNL 4000111689 Novel Software Storage Architectures.

iv

Table of Contents

Title Page . i

Abstract . ii

Dedication . iii

Acknowledgments . iv

List of Tables . vii

List of Figures . viii

1 Introduction . 1
1.1 Assumptions . 3

2 Related Work . 5
2.1 Distributed File Systems . 5
2.2 Related security art . 8
2.3 Distributed systems authentication . 10

3 Security Verification . 18
3.1 Casper . 20
3.2 CSP . 24
3.3 FDR . 26

4 Performance Evaluation . 29
4.1 Petri nets . 30
4.2 Similarity between CSP and Petri net . 32
4.3 Reachability and Karp Miller Trees . 32
4.4 Connectivity Matrix . 35
4.5 Deadlocks and Livelocks . 36
4.6 Bottleneck Analysis . 37

5 Distributed Authentication and Authorization 38
5.1 Kerberos . 39
5.2 PERMIS . 41
5.3 Shibboleth . 43

v

6 Implementation . 46
6.1 UML sequence diagram . 46
6.2 Security verification . 48
6.3 Performance Evaluation . 52

7 Test Results . 57
7.1 Security test result . 57

8 Conclusions and Future Work . 60

Appendices . 61
A Security Test Results on FDR . 62
B Petri Net Graphs . 65
C Karp-Miller Trees Graphs . 68
D Casper Scripts . 71

Bibliography . 85

vi

List of Tables

2.1 Comparision of Distributed Authentication Tools 16
2.2 Comparision of Distributed Authorization Tools 17

6.1 Mathematical Notation for Security Protocols 47
6.2 Mathematical Notation used for Kerberos 49
6.3 The Structure of SAML Attribute Assertion in PERMIS [22] 51
6.4 Attribute Query Message (AQM) Common Syntax [24] 52
6.5 Attribute Response Message (ARM) Common Syntax [24] 53

7.1 Security Test result of Kerberos . 58
7.2 Security Test result of PERMIS . 58
7.3 Security Test result of Shibboleth . 58
7.4 Livelock and Deadlock Test Results . 59

vii

List of Figures

2.1 The Authorization Process of Light Weight File System 6
2.2 The Authorization of Parallel Virtual File System 7
2.3 The Authorization of Lustre . 8
2.4 The Authorization of Pansas File System 9

3.1 Security verification procedure of Needham-Schroeder protocol using Casper,
CSP, and FDR . 19

3.2 Compilation result of Needham-Schroeder protocol in Casper compiler . . . 24
3.3 Needham-Schroeder protocol FDR test result 26

4.1 Basic components and an example of Petri net model 30
4.2 Basic Event Structures Modeling in CSP and Petri Net [30] 32
4.3 Transition firing examples of Petri net model 33
4.4 The reachability tree of the Petri net example 35

5.1 The system diagram of Kerberos . 40
5.2 The system diagram of PERMIS . 42
5.3 The system diagram of Shibboleth . 44

6.1 Overall process of security verification and performance evaluation 47
6.2 System level sequence diagram of Kerberos 50
6.3 System level sequence diagram of PERMIS 51
6.4 System level sequence diagram of Shibboleth 54

1 Karp-Miller Tree of Kerberos with Two initial tokens 68
2 Karp-Miller Tree of PERMIS with Two initial tokens 69
3 Karp-Miller Tree of Shibboleth with Two initial tokens 70

viii

Chapter 1

Introduction

Parallel distributed computing, a.k.a high performance computing, has been used

to solve many important compute-intensive problems such as quantum physics, weather

forecasting, climate research, molecular modeling, or nuclear weapon simulations. Hard-

ware components of supercomputers are not different from those of personal computers,

since modern parallel distributed systems are made up of multiple servers using commodity

hardware for cost efficiency. Performance is achieved by interactions between hundreds to

millions of computing nodes.

Although the computing power of parallel distributed system is strong enough,

slower storage nodes or bottlenecks on the communication between them can harm over-

all system performance. Therefore, larger and faster file systems are required for modern

high performance computing. Distributed file systems provide both high performance and

robust file access to parallel distributed system. Distributed file systems need to pay more

attention to possible security threats than do centralized file systems. Applying distributed

authentication and authorization could be a good solution for distributed file systems to

maintain security while delivering exabyte performance, but we must check whether ex-

isting authentication and authorization tools have any negative impact on performance or

security.

Distributed file system must assure security to prevent altering, forging or sniffing of

1

data. Security requirements for parallel distributed systems are quite different from those

of personal computers even though the hardware components of supercomputers are made

of commodity hardware, and Linux is commonly used as an O/S, since centralized security

tools are likely to cause bottlenecks and introduce a single point failure.

Standardized cryptography protocols are typically more secure than newly proposed

concepts, mainly because they have been thoroughly peer reviewed. Most distributed sys-

tems on the internet have similar needs and a set of standardized tools has been developed

to fulfill the performance requirement of distributed file system. On the other hand, dis-

tributed approaches which rely on a single root of trust are almost certain to become a

performance bottleneck. We must check whether the authentication and authorization

tools have performance or security problems.

To secure the system, the security tools maintain security attributes. These security

attributes guarantee that:

• participants are authenticated; access rights are verified at session initiation and re-

voked as necessary;

• transactions cannot be repudiated;

• and a reliable audit trail of security events is maintained.

The network needs to provide a sensible integration of cryptographic primitives into

file system communications; guarding against man-in-the-middle attacks, replay attacks,

eavesdropping, and data tampering. Cryptographic primitives are needed for data at rest

security, especially when files move to tertiary storage. Authentication and authorization

tools typically rely on secure cryptographic key distribution protocols.

To verify security properties of a given security protocol, we use Communicating

Sequential Processes (CSP) formalisms [33, 51] as implemented in the Failure Divergence

Refinement (FDR) model checker. CSP is a mathematical framework for description and

analysis of systems with component interactions via message exchange. FDR is an auto-

mated model checker which can determine whether the security property is fulfilled or not.

2

If not, a counter example is returned by FDR. Constructing the CSP model of a security

protocol is somewhat tricky. A compiler called Casper was developed [32] to ease model de-

velopment. With Casper, only high level information of a security protocol to be checked is

needed. Casper automatically constructs the CSP model for FDR. We use a three message

version of Needham-Schoroeder message exchange protocol as an example for proving the

validity of our security and performance verification methods.

The Petri net is a mathematical model for describing discrete distributed systems

and it has been widely used for performance analysis on different fields. Any event structure

that can be modeled by CSP can also be modeled by Petri nets. By evaluating the Petri

net model of security protocols, we measure the performance of security protocols. Karp

Miller tree of a stochastic Petri net (SPN) is identical to the underlying Petri net model.

By using the reachability tree, we can directly find deadlocks and livelocks.

We provide details on CSP, FDR, and Casper script used for our security verification

methods in chapter 3. In chapter 4 we discuss on the theories of Perti net and Karp-

Miller Tree used for performance verification. We briefly introduce Kerberos, PERMIS and

Shibboleth in Chapter 5. Chapter 6 shows how we implement the test software based on

the theories introduced in 3 and 4. Then, we show our results and conclusion in chapter 7

and 8.

1.1 Assumptions

We assume the storage system executes in an environment where low level commu-

nications security is assured. Address spoofing and message security are not relevant to

this work. The system either uses an architecture where these attacks are not feasible, or

security is provided by a lower level of the implementation stack. For example, a wide area

network implementation could use IPV6 with IPSec. In which case, the networking layer

secures the communications. We do not explicitly consider side-channel attacks, since these

vulnerabilities are orthogonal to this work. In environments where side-channel attacks are

3

relevant, countermeasures, such as equalization of resource consumption, are usually best

handled using some combination of compiler technologies and the physical or MAC layers

of the architecture [10]. The specific assumptions we make are:

• File System

– System implementation does not introduce additional vulnerabilities.

– Storage nodes are not corrupted

– Eavesdropping on packets is not viable.

– Client nodes may be corrupted.

– Infinite number of servent nodes possible.

• Network

– No sniffing/spoofing.

– Channel security assured at another level of abstraction (e.g. IPSec or SSL/TLS).

• Security

– Client login on local node outside of scope.

– Side-channel attacks outside of scope.

– Data scavenging outside of scope.

– Physical attacks out of scope.

4

Chapter 2

Related Work

Exabyte-scale distributed file systems need to reliably store and retrieve informa-

tion at rates exceeding 1018 bytes per second. Reliable storage and retrieval implies system

enforcement of basic security guarantees. Since enforcing security guarantees is common

to all information processing systems, it is only reasonable to leverage existing security

enforcement tools. In this chapter, We skim over a brief overview on existing distributed

file systems, and related security art. It then proposes a general authentication and autho-

rization architecture for the proposed system.

2.1 Distributed File Systems

2.1.1 LWFS

The Light Weight File System (LWFS) controls access to file containers through

the use of capabilities that provide proof of authorization for file access. Capabilities are

provided by processes possessing the proper credentials. Credentials serve as proof of user

authorization by a trusted external mechanism. Credentials and capabilities may be trans-

ferred between processes as needed [45]. The LWFS architecture has authentication and

authorization servers that are separate from file storage servers [46]. This separation adds

extra components to the system architecture and may eventually be a performance bottle-

5

File Server File Server
Client App Launch

Authorization

Server

2. Request a capability
4. Request with the capability

5. Capability

7. File Access

6. Validation

 Result

1. Credential

File Server

3. Issue a capability

Figure 2.1: The Authorization Process of Light Weight File System

neck.

2.1.2 PVFS

The Parallel Virtual File System (PVFS) is a high performance distributed file sys-

tem for Linux clusters. PVFS security is enforced through digital signing. PVFS metadata

contains the information needed to verify access rights. Metadata is retrieved once by a

client and then reused as needed. Authentication is performed first by the local operat-

ing system and then public key cryptography is used for authentication within PVFS. For

the sake of performance, X.509 and Assertion Markup Language (SAML) data structures

are not used. For non-repudiation, data signing is done using RSA [2]. For the sake of

performance, the RSA key lengths used are relatively short.

2.1.3 GPFS security

IBMs General Parallel File System (GPFS) is a high performance distributed file

system [50]. Security is maintained by using SSL and RSA public key authentication [3].

RSA public keys are provided to system administrators for mounting volumes. SSL typically

uses public key primitives to generate symmetric keys that are used to maintain security

6

File Server File Server
Client

Metadata Server

1. Request

a capability

3. Request with the capability

5. File Access

4. Verify the capability

File Server

2. Issue

a capability

Figure 2.2: The Authorization of Parallel Virtual File System

for the life of the session.

2.1.4 Lustre

Lustre is a massively parallel file system for Linux Clusters. Lustre [Su-Qin 2010]

supports two authentication mechanisms: Kerberos and Public Key Infrastructure (PKI)

[Braam 2004]. Kerberos uses a centralized authentication server that must be on-line contin-

uously. In its PKI implementation, X.509 certificates are generated by a trusted authority.

To access the file system, both the client and Metadata Server (MDS) exchange messages

and access an LDAP directory. The MDS then transmits information that the client can

use to access an Object Storage Target (OST).

2.1.5 Panasas file system

The Panasas file system uses a symmetric key approach within the Generic Security

Services Application Programming Interface (GSS-API). Multiple implementations could

be consistent with this Object-based Storage Device (OSD) standard. In [Ko 2006] an au-

thentication protocol is detailed with communications between six entities using a set of

seven hierarchical symmetric keys. [Leung 2006] has a different approach where multiple

7

Clients Clients
File Server File Server

Clients

MetaData

Servers

File I/O and file locking

Directory Operations

File open / close

Access metadata

 and concurrency

Object

Storage

Servers

Recovery,

file status, and

file creation

Figure 2.3: The Authorization of Lustre

MDSs work in parallel to respond to client authentication requests. In [Leung 2006] MDSs

return access handles that are capabilities allowing clients to access OSD. A major vulnera-

bility to this approach is that both client and MDS start with an a priori known symmetric

key [Oldfield 2006a]. The compromise of any client would destroy the security model. In

addition, access revocation is problematic.

2.2 Related security art

Distributed system security is important for many applications. Multiple tools exist.

Most implement established standards. Standards are adapted after rigorous peer review.

It is preferable to rely on peer-reviewed security standards rather than new security con-

cepts whenever possible. New security concepts are frequently derided as security through

obscurity [Lam 2004]. They are often brittle and subject to flaws that the original designer

did not foresee. This section reviews the tools most relevant to the P2P file system.

Many standards exist for handling security credentials. These standards allow se-

curity systems to interact transparently. They reduce the need to implement parsers, error

checking, and other common support functions. Unfortunately, data structure standards

8

MetaData Server (MDS) MetaData Server (MDS)

Clients Clients
File Server File Server

Clients

MetaData Server (MDS)

File I/O via iSCSI/OSD

Access capability and

location information of objects

via RPC (remote procedure call)

Object

Storage

Devices(OSD)

File Control

NFS/CIFS

Client

()()
SysMgr

PanFS

Figure 2.4: The Authorization of Pansas File System

are typically designed by committees seeking to foresee all possible eventualities. They are

often bloated, which may have performance implications for an Exabyte file system.

2.2.1 XML based data structures

Numerous security data structure standards have been issued by OASIS based on

XML. SAML is a data structure for exchanging authentication and authorization informa-

tion between security domains [Cantor 2005]. XACML (eXtensible Access Control Markup

Language) is a language for expressing access control policies. XRML (eXtensible rights

Markup Language) is a language for expressing access rights for digital content [XrML

2010]. XRML and XACML are very similar.

• Pros

– Strong authentication based on PKI

– Widely used as a standard

• Cons

– Single point of failure vulnerability: It requires continuous availability of a central

9

server.

– Heavy traffic bottleneck

– Heavy processing

– Attacker still can construct bad certificates.

2.3 Distributed systems authentication

This brief discussion of distributed authentication standards will mention the major

tools; presented roughly in chronological order. We concentrate on the aspects of each tool

that are most relevant to this project.

2.3.1 Kerberos

Kerberos uses Needham-Schroeder key distribution [Needham 1978] to authenticate

users. To access a service, the client requests a ticket [Neuman 1994]. Since a centralized

authentication server must be continuously available, Kerberos would introduce a single

point of failure to this system and would quickly become a performance bottleneck. Further

discussions on Kerberos will continue in section 6.

• Pros

– Less computing power if it only uses symmetric keys.

– Flexible on cryptography

• Cons

– Designed for trustworthy server-client models, not for P2P system.

– Heavy traffic bottleneck.

– Vulnerability on symmetric key encryption: if one key has been lost, whole system

will be vulnerable in certain amount of time.

10

– Single point of failure vulnerability: It requires continuous availability of a central

server.

– Kerberos has strict time requirements, which means the clocks of the involved

hosts must be synchronized within configured limits.

2.3.2 PGP Web of trust

The PGP web of trust tries to remove the need for a single root of trust and cen-

tralized authentication servers. In this approach, public key certificates are signed by many

authorities that attest to their validity [Blaze 1996]. As long as each participant is dili-

gent in verifying user identity, this process should be robust. Problems exist with collusion

attacks [Lenstra 2005], certificate revocation, and users with disjoint sets of colleagues.

• Pros

– Strong authentication based on PKI

– Good for decentralized network

– Less or no traffic bottleneck

– Easy to manage

• Cons

– Attackers also can make fake public keys and issue them.

– PGP methods still require a lot of processing power.

2.3.3 Group keys with key management trees

An alternative to both the use of public keys and the need for a continuously avail-

able centralized server is the use of binary key trees [Poovendran 1999, Pillai 2006, Brooks

2007, Brooks 2007a, Brooks 2009] for key management. The entire workgroup shares a

common symmetric key for securing communications. A binary tree structure of Key-

Encryption-Keys (KEK) is created where each client is a leaf node and there is a symmetric

11

KEK associated with each node of the tree. Each of the n clients therefore has to store

keys. The key management server refreshes the communications keys periodically using

messages secured using the KEK. It is possible to efficiently revoke system access for any

subset of clients by modifying the group key and excluding that subset of clients. In [Pillai

2006], we show how this can be securely implemented for a set of peer nodes to combat

cloning, Sybil, and Byzantine Generals attacks. If key management nodes have overlapping

sets of clients, it is possible to detect malfeasance by an isolated key management node.

The use of secure key server selection schemes [Pirretti 2005, Pirretti 2006] can also make

this approach immune to collusion attacks.

• Pros

– Fast key encryption and decryption

– Distributed authentication.

– Less bottlenecks on network.

– Good for distributed system.

• Cons

– Not good for unstructured P2P.

– Vulnerability on symmetric key encryption: if one key has been lost, whole system

will be vulnerable in certain amount of time.

2.3.4 LDAP

X.509 was designed to define secure identifier entries in a universal X.500 (DAP)

directory system for the X.400 messaging system. The X.500 and X.400 standards were

never fully implemented. LDAP (Lightweight DAP) is a distributed directory system that

implements major portions of the X.500 standard [Howes 1995]. It forms a bridge between

the ITU and IETF standards families. LDAP can be used as a tool for organizing and

retrieving authorization information [Wahl 2000]. LDAP communications use TCP, which

12

may be secured using either TLS or Kerberos. The use of TCP may be problematic in

this application. The rest of the file system is expected to be based on UDP to allow more

flexibility. LDAP is also subject to injection attacks that may result in data disclosure,

modification of the LDAP directory, and corruption of LDAP data [Alonso 2008]. The

LDAP design has also been criticized for not maintaining referential integrity [Blaha 2005].

• Pros

– LDAP directory can be accessed from any computing platform.

– LDAP servers are simple to install, easily maintained, and easily optimized.

– LDAP servers can replicate either some or all of their data via push or pull

methods, allowing you to push data to remote offices, or increase security.

– LDAP allows users delegate read and modification authority based on ACL.

• Cons

– It is not well suited for storing data where changes are frequent.

2.3.5 DIAMETER

DIAMETER is an authentication and authorization protocol that is the successor to

RADIUS (Remote Authentication Dial In User Service). It relies on TCP sessions secured

using either TLS or an existing IPsec tunnel [Calhoun 2003]. TLS vulnerabilities based on

X.509 infrastructure are discussed in [Brooks 2010]. Similarly, IPsec may be vulnerable to

X.509 issues and is very vulnerable to Denial of Service attacks [Nikov 2006]. Each hop of

the base DIAMETER protocol is secure, but unless the end-to-end variant is used proxies

can execute man-in-the-middle attacks. The DIAMETER node serves as a centralized

repository of authentication information.

13

2.3.6 TACACS+

TACACS+ (Terminal Access Controller Access-Control System Plus) is a Cisco

proprietary access and authentication system [Cisco 2010]. TACACS+ and DIAMETER are

considered current authentication and authorization approaches. TACACS+ has a number

of security issues [Peslyak 2010]. It has integrity checking issues, is vulnerable to replay

attacks, its encryption can be compromised if session IDs are not unique, session collisions

can reveal passwords, and a lack of padding compromises password strength [Young 2004].

2.3.7 Shibboleth

Shibboleth is an Internet2 Middleware Initiative project that is for federated identity-

based authentication and authorization infrastructure based on SAML. Federated identity

allows for information about users in one security domain to be provided to other organiza-

tions in a federation [24]. This allows for cross-domain single sign-on and removes the need

for content providers to maintain user names and passwords [42].

• Pros

– Organizational Single Sign-on System

– Controlled Information Release

– Federated Access

– Virtual Identity Provider

• Cons

– Heavy traffic bottleneck.

– Single point of failure vulnerability: It requires continuous availability of a central

server.

14

2.3.8 PERMIS

PERMIS supports the distributed assignment of both roles and attributes to users

by multiple distributed attribute authorities, unlike centralized assignment of roles to users.

PERMIS provides a cryptographically secure Privilege Management Infrastructure (PMI)

using public key encryption technologies and X.509 attribute certificates to maintain user

attributes [Chadwick 2003]. PERMIS does not provide any authentication mechanism, but

leaves it up to the application to determine what to use. (In earlier version, PERMIS only

supported X.509) Currently, PERMIS uses LDAP as a network accessible repository for

storing policies and credentials [Permis 2010]. PERMIS does not do authentication, but

may be integrated with authentication systems, such as DIAMETER or Shibboleth. We

further discuss Permis as our proposed authorization tool in section 5.

• Pros

– PERMIS can be integrated into virtually any application and any authentication

scheme like Shibboleth (Internet2), Kerberos, username/passwords, and PKI.

– Less computing power than PGP.

– Less bottlenecks on network.

– Good for P2P system by distributed authorization servers.

– It directly support XACML and SAML

• Cons

– No authentication mechanism exists. It should be used with other methods, but

it may require more computing power than other single security mechanism.

– Vulnerability on symmetric key encryption: if one key has been lost, whole system

will be vulnerable in certain amount of time.

– LDAP vulnerability

15

PKI Kerberos Athens

Authentication
Mechanism

Digital certificates /
signatures

Tickets Usernames

Single Sign On Proxy certificates Can be provided Partial through
usernames

Authentication
Delegation

Through proxy
certificates

Cross-realm trust
configurations

Not provided

Authentication
Usability

Cumbersome process of
acquiring, using and
managing the certificate

User friendly as the
process of ticket
generation is hidden from
user

User-friendly process of
getting Athens usernames

Table 2.1: Comparision of Distributed Authentication Tools

W. Jie et. al. compared the distributed authentication and authorization tools in

[29]. We examine the paper to compare and decide which security tools are appropriate to

our design purpose. The table 2.1 and 2.2 are from the paper.

16

Grid-map file CAS VOMS PERMIS Akenti

Authorization
Model

User identity Role Attribute Attribute Attribute

Authorization
Mode

Distributed Centralized
(CAS server)

Centralized
(VOMS server)

Distributed Distributed

Authorization
Delegation

No Partially Partially Yes Yes

Authorization
Granularity

Coarse-grained Fine-grained
when each SP
defines
fine-grained
policy

Fine-grained
when each SP
defines
fine-grained
policy

Multi-grained Multi-grained

Performance
Scalability

Not good
(scalability
issue)

Not good (SPF
& Scalability
issue)

Better than
CAS

Good Good

Authorization
Manageabil-
ity

Manage whole
grid-map &
heavy load

Need
fine-grained
policies

Need
fine-grained
policies

Independent
role-based
management

Achieved using
delegation
capabilities

Authorization
Usability

Easy-to-use but
lack of policy
expression

Plain extension
to proxy
certificates

Not addressed Easy-to-use in
XML

GUI interface

Credential
Confidential-
ity

Not applicable Kept &
managed by
Authorization
Infrastructure

Kept &
managed by
Authorization
Infrastructure

Kept &
managed by
Authorization
Infrastructure

Kept &
managed by
Authorization
Infrastructure

Communication
Confidential-
ity

TLS/MLS SAML SAML SAML/XACML SAML

Table 2.2: Comparision of Distributed Authorization Tools

17

Chapter 3

Security Verification

Security protocols are designed to assure a set of security properties; confidentiality,

authentication, integrity, non-repudiation, anonymity, access control, availability [10]. The

protocols involve cryptographic operations such as hash functions, encryption, and digital

signatures. Some protocols such as TLS, Kerberos and AAA may require the participation

of a third trusted party. They always assume the underlying cryptographic mechanisms are

perfect, but we need to ensure the protocols are valid.

Security protocol validation has been an active research topic. Much of this work

uses various types of logic, such as BAN-logic [58, 35, 57, 25], linear temporal logic [19],

and other variants [9, 16, 17, 18]. Using logic, it is possible to check whether or not a

security protocol provide required security. If it fails to provide a security property, usually

a counter example will be generated.

Another way to analyze security prosperities utilizes CSP [33, 51, 55, 53, 48] and

the FDR model checker. CSP, proposed by C. A. R. Hoare in 1985 [28], is a mathematical

framework for describing and analyzing systems consisting of components interacting via

the exchange of messages [28, 47, 52]. FDR is an automated model checker [1].

For analyzing a security protocol against a given security property, a CSP model of

the security protocol is created, which include message flows of the security protocol, the

security property to be checked, and intruders with explicit capabilities, such as eavesdrop-

18

0. -> A : B
1. A -> B : {na, A}{PK(B)}
2. B -> A : {na, nb}{PK(A)}
3. A -> B : {nb}{PK(B)}

-- Secrets in the protocol
ALL_SECRETS_0 = Nonce
ALL_SECRETS = addGarbage_(ALGEBRA_M::applyRenamingToSet(ALL_SECRETS_0))

-- Define type of signals, and declare signal channel

datatype Signal =
 Claim_Secret.ALL_PRINCIPALS.ALL_SECRETS.Set(ALL_PRINCIPALS) |
 Running1.HONEST_ROLE.ALL_PRINCIPALS.ALL_PRINCIPALS.Nonce.Nonce |
Commit1.HONEST_ROLE.ALL_PRINCIPALS.ALL_PRINCIPALS.Nonce.Nonce |
 RunCom1.ALL_PRINCIPALS.ALL_PRINCIPALS.Nonce.Nonce.Nonce.Nonce |

 Running2.HONEST_ROLE.ALL_PRINCIPALS.ALL_PRINCIPALS.Nonce.Nonce |
Commit2.HONEST_ROLE.ALL_PRINCIPALS.ALL_PRINCIPALS.Nonce.Nonce |
 RunCom2.ALL_PRINCIPALS.ALL_PRINCIPALS.Nonce.Nonce.Nonce.Nonce

channel signal : Signal
Fact_1 =

 Union({
 {Garbage},
 Agent,
 Nonce,
 PublicKey,

 SecretKey,
 {Encrypt.(PK__.(B), <na, A>) |
 A <- Agent, B <- Agent, na <- Nonce},
 {Encrypt.(PK__.(A), <na, nb>) |
 A <- Agent, na <- Nonce, nb <- Nonce},

 {Encrypt.(PK__.(B), <nb>) |
 B <- Agent, nb <- Nonce}
 })

Sequence Diagram

A B

{na, A}PK(B)

{na, nb}PK(A)

{nb}PK(B)

Casper Script CSP

FDR Result

Figure 3.1: Security verification procedure of Needham-Schroeder protocol using Casper,
CSP, and FDR

ping, forging, password cracking, and so on. Once the protocol is described by CSP, FDR

can analyze the effect of possible threats on the protocol. The result of FDR is that the

security property is either fulfilled or failed. If failed, a counter example is returned.

Casper is a script language developed for constructing CSP code for a security

protocol[49]. With Casper, only a high level description of a security protocol is needed.

Casper automatically constructs FDR code. Figure 3.1 shows how security analysis can be

done with Casper, CSP, and FDR. In this section, we explain our security analysis proce-

dures using a simple example of Needham-Schroeder message exchange protocol, introduced

in [41].

The security verification procedure is as follows. First we gather cryptography

and message passing information from design documents, source codes, and papers, From

this information, we can draw a sequence diagram of the security protocol. Then, Casper

scripts of the security protocol can be written based on the sequence diagram. Next, we

compile Casper scripts to translate them into CSP. Security protocols written in CSP can

be analyzed by FDR. The sequence diagram will also be used for performance analysis.

19

3.1 Casper

The Casper scripting language and its compiler were first introduced by G. Lowe

in [32]. The scripting language is designed for describing security protocols in a simple,

intuitive, and abstract notation. The Casper compiler translates Casper Script into CSP.

3.1.1 Casper script

Casper script consists of eight different sections to precisely describe protocols. Each

section starts with ‘#’ notation. We show an example Needham-Schroeder protocol from

[34]. Full Casper script of the protocol shown in figure 3.1 is listed as follows.

−− Needham Schroeder Publ ic Key Protocol , 3 message ve r s i on

#Protoco l d e s c r i p t i o n

0 . −> A : B

1 . A −> B : {na , A}{PK(B)}

2 . B −> A : {na , nb}{PK(A)}

3 . A −> B : {nb}{PK(B)}

#Free v a r i a b l e s

A, B : Agent

na , nb : Nonce

PK : Agent −> PublicKey

SK : Agent −> SecretKey

InverseKeys = (PK, SK)

#Proce s s e s

INITIATOR(A, na) knows PK, SK(A)

RESPONDER(B, nb) knows PK, SK(B)

#Sp e c i f i c a t i o n

Sec r e t (A, na , [B])

Sec r e t (B, nb , [A])

Agreement (A,B , [na , nb])

20

Agreement (B,A, [na , nb])

#Actual v a r i a b l e s

Al ice , Bob , Mallory : Agent

Na , Nb, Nm : Nonce

#Functions

symbol ic PK, SK

#System

INITIATOR(Al ice , Na)

RESPONDER(Bob , Nb)

#Int ruder In format ion

Int ruder = Mallory

IntruderKnowledge = {Alice , Bob , Mallory , Nm, PK, SK(Mallory)}

We introduce the role of each section and the Casper syntax used in this example.

Please refer to [32, 34] for detailed Casper syntax. The line which starts with ‘–’ is a com-

ment line and ignored by Casper. The script has two parts; protocol description and system

definition. The protocol description defines the security and communication protocol. It has

four individual sections; protocol description, free variables, processes, and specification.

#Protoco l d e s c r i p t i o n

0 . −> A : B

1 . A −> B : {na , A}{PK(B)}

2 . B −> A : {na , nb}{PK(A)}

3 . A −> B : {nb}{PK(B)}

“#Protocol description” models the message flow in Figure 3.1. In this model, we

assume that A is a client, and B is a server. -> represents message flow direction. “0. ->

A : B” is included to start the protocol, representing that the client A obtains the identity

of server B from the environment. Message “1. A -> B : {na, A}{PK(B)}” means client A

sends server B a nonce na and B’s identity encrypted by server B’s public key. Since the

21

three message version of Needham-Schroeder protocol uses public key encryption and each

agent has its own secret key, the message sent by A can be decrypted by B using B’s secret

key. The nonce is a random number that is used only once [41]. Message 2 and 3 use the

same notation with message 1. “2. B -> A : {na, nb}{PK(A)}” means B sends na and

newly generated nb encrypted by A’s public key. Message “3. A -> B : {nb}{PK(B)}” is

for B to confirm the nonce nb generated by B itself.

#Free v a r i a b l e s

A, B : Agent

na , nb : Nonce

PK : Agent −> PublicKey

SK : Agent −> SecretKey

InverseKeys = (PK, SK)

“#Free variables” is a variable list which includes agents as servers or clients, nonces

for cryptographic messages, and cryptographic keys for encryption and decryption. “Inverse

Key = (PK, SK)” means the system uses asymmetric key cryptography.

#Proce s s e s

INITIATOR(A, na) knows PK, SK(A)

RESPONDER(B, nb) knows PK, SK(B)

“#Processes” shows various information on the agents of the protocol using plain

English statements. The statements in the example show who knows which cryptographic

keys.

#Sp e c i f i c a t i o n

Sec r e t (A, na , [B])

Sec r e t (B, nb , [A])

Agreement (A,B , [na , nb])

Agreement (B,A, [na , nb])

The security properties to be checked are specified in “#Specification”. We check

the secrecy of na and nb. “Secret(A, na, [B])” means that “A thinks that na is a secret that

can be known to only himself A and B”. Agreement lines are for agreement authentication

22

specifications; that A . “Agreement(A,B,[na,nb])” means “If A completes a run of the

protocol, apparently with B, then B has been running the protocol, apparently with A:

further, the two agents agree upon the roles each took and upon the values of the nonces

na and nb; and there is a one to one relationship between such runs of A and those of B.”

[49]

The system definition part describes which agents should be tested against which

malicious attacks. The part includes four sections; actual variables, functions, the system,

and the intruder.

The “#Actual variables” section defines which items should be dealt with on the

security verification. In this system, the FDR software verification tool checks three agents

and three nonces.

#Actual v a r i a b l e s

Al ice , Bob , Mallory : Agent

Na , Nb, Nm : Nonce

The “#Function” section describes any functions used by the agents in the protocol

description. “symbolic” means that Casper generates its own values to show the result of

the function applications.

#Functions

symbol ic PK, SK

The “#System” section defines who will have the role of initiator, responder, or

server in the protocol. In addition, it defines who uses what in the protocol. For example,

“INITIATOR(Alice, Na)” means that initiator Alice will use Na in the protocol.

#System

INITIATOR(Al ice , Na)

RESPONDER(Bob , Nb)

In the script, the ”#Intruder Information” section models the capacity of an at-

tacker. It suggests that the attacker compromises a legitimate user and obtained that

user’s credentials, including the secret key.

#Intruder In format ion

23

Figure 3.2: Compilation result of Needham-Schroeder protocol in Casper compiler

In t ruder = Mallory

IntruderKnowledge = {Alice , Bob , Mallory , Nm, PK, SK(Mallory)}

3.1.2 Casper compiler

The Casper compiler runs over a Haskell compiler which generates functional pro-

gramming languages from abstract languages. The Casper compiler generates CSP code

from the Casper script which describe the protocols and verification model in abstract way.

Figure 3.2 shows the compilation result of Needham-Schroeder protocol.

3.2 CSP

CSP (Communication Sequential Processes), proposed by C. A. R. Hoare in [28], is

a process calculus for describing systems of multiple agents that communicate by passing

messages. CSP can describe theoretical problems that arise from concurrency. In [49], P.

Ryan and S. Schneider introduce how to formalize security properties by using CSP. In this

paper, we do not model security protocols using CSP. We use Casper to model a security

24

protocol for security analysis since the CasperFDR tool can automatically generate CSP

code from Casper script. Refer to [28] for modeling using CSP. We discuss basic CSP and

introduce the similarity between CSP and Petri nets for performance analysis.

3.2.1 Basic building blocks of CSP

CSP has two classes of primitives; events, and processes. Events represent com-

munications or interactions, and processes represent fundamental behaviors. The simplest

example of CSP ”Stop” shows how each primitive can be used.

in→ out→ Stop

in and out are events, and Stop is a process. It means that if input occurs, and

output occurs then stop the procedure. Also, CSP provides various algebraic operators.

In this paper, we introduce some, but not all, operators for security protocol modeling.

Others are described in [28]. The prefix operator produces a new process from an event.

For example, a→ B produces process B when event a happens.

CSP provides choice operators. There are two different choice operators; deter-

ministic and non-deterministic. In this paper, we use only non-deterministic choice. The

nondeterministic choice operator, ‘u’ represents a choice between two component processes,

but does not allow the environment control over which component process will be selected.

For example,

(a→ A) u (b→ B)

behaves like either a→ A or b→ B.

The interleaving operator ‖ represents independent concurrent activity. The process

A ‖ B

means both A and B occurs simultaneously.

CSP provides more, but we use only the operators introduced above. CSP de-

scriptions of security protocols can be directly converted into Petri nets. A Petri net is a

25

Sequence Diagram

A B

{na, A}PK(B)

{na, nb}PK(A)

{nb}PK(B)

FDR Overall Result

Counter Example as attacks (Casper notation)

Figure 3.3: Needham-Schroeder protocol FDR test result

mathematical model for describing discrete distributed systems, which is an established tool

for performance analysis [20]. The CSP operators used for security properties validation

are similar to Petri nets. Details of Petri nets will be introduced in section 4.

3.3 FDR

FDR is an automated model checker [19] for analyzing a given security properties. A

CSP model of the security protocol includes the message flows of the security protocol, the

security property, and hostile intruders with explicit capacities, such as message dropping,

message modification, etc. The CSP model is fed into FDR. The FDR result is that the

security property is either fulfilled or not. If not, a counter example is returned.

We give an example analysis of the Needham-Schroeder protocol using Casper and

FDR. Figure 3.3 shows the security analysis result of Needham-Schroeder protocol three

message version.

The FDR result reveals that the 3 message Needham-Schroeder protocol has a se-

crecy vulnerability. The failure counter example follows.

Top l e v e l t r a c e :

26

Al i c e b e l i e v e s Na i s a s e c r e t shared with Mallory

Bob b e l i e v e s Nb i s a s e c r e t shared with Al i c e

The in t rude r knows Nb

System l e v e l :

Casper> 0 . −> Al i c e : Mallory

1 . A l i c e −> I Ma l l o ry : {Na , A l i c e }{PK(Mallory)}

1 . I A l i c e −> Bob : {Na , A l i c e }{PK(Bob)}

2 . Bob −> I A l i c e : {Na , Nb}{PK(Al i c e)}

2 . I Ma l l o ry −> Al i c e : {Na , Nb}{PK(Al i c e)}

3 . A l i c e −> I Ma l l o ry : {Nb}{PK(Mallory)}

3 . I A l i c e −> Bob : {Nb}{PK(Bob)}

The in t rude r knows Nb

The example shows that the intruder Mallory performs man-in-the-middle attack.

He pretends to be Bob to Allice between them. Then he successfully steals the secret nb.

Also, the authentication of both A to B, and B to A has failed. The following example

reported by Casper shows how the intruder is taking the role of both Alice and Bob.

Checking a s s e r t i o n SECRET M : : SEQ SECRET SPEC

[T= SECRET M : : SYSTEM S SEQ

Attack found :

Top l e v e l t r a c e :

The in t rude r knows Nb

System l e v e l :

Casper> 0 . −> Al i c e : Mallory

1 . A l i c e −> I Ma l l o ry : {Na , A l i c e }{PK(Mallory)}

27

1 . I A l i c e −> Bob : {Na , A l i c e }{PK(Bob)}

2 . Bob −> I A l i c e : {Na , Nb}{PK(Al i c e)}

2 . I Ma l l o ry −> Al i c e : {Na , Nb}{PK(Al i c e)}

3 . A l i c e −> I Ma l l o ry : {Nb}{PK(Mallory)}

3 . I A l i c e −> Bob : {Nb}{PK(Bob)}

The in t rude r knows Nb

Checking a s s e r t i o n AUTH1 M : : Authent icate

INITIATORToRESPONDERAgreement na nb [T= AUTH1 M : : SYSTEM 1

Attack found :

Top l e v e l t r a c e :

Bob b e l i e v e s he has completed a run o f the protoco l ,

tak ing r o l e RESPONDER, with Al ice , us ing data items Na , Nb

System l e v e l :

Casper> 0 . −> Al i c e : Mallory

1 . A l i c e −> I Ma l l o ry : {Na , A l i c e }{PK(Mallory)}

1 . I A l i c e −> Bob : {Na , A l i c e }{PK(Bob)}

2 . Bob −> I A l i c e : {Na , Nb}{PK(Al i c e)}

2 . I Ma l l o ry −> Al i c e : {Na , Nb}{PK(Al i c e)}

3 . A l i c e −> I Ma l l o ry : {Nb}{PK(Mallory)}

3 . I A l i c e −> Bob : {Nb}{PK(Bob)}

28

Chapter 4

Performance Evaluation

In this chapter, we evaluate the performance of security protocols by using Petri

nets. Security protocols consist of cryptographic operations and communications among

parties. The Petri net model includes cryptographic operations and communication the

timing information. The model also includes system capacity issues, such as the number

of users the system can support at a time. By evaluating the Petri net model, we obtain

performance measures such as the average time to serve a user, the average time a user

spends on cryptographic operations or communications, etc.

Karp and Miller [31] proposed a method to construct the reachability tree. This

method guaranteed a finite reachability tree. The reachability graph is obtained by merging

the same markings in the reachability tree. Karp Miller tree of a stochastic Petri net (SPN)

is identical to the underlying Petri net model. By using the reachability tree, we can directly

find which node is in deadlock, and which nodes are in livelock. The performance evaluation

procedure is listed as follows:

1. Generate XML descriptions of security protocols from Casper-CSP models or sequence

diagrams.

2. Generate Petri-Nets.

3. Generate Karp-Miller Trees.

29

Place without mark

Place with mark

Transition

Arc

A PN model of Needham Schroeder protocol

P
1

P
2

P
3

P
4

P
5

P
6

P
7

P
8

P
9

T
1

T
2

T
3

T
4

T
5

Figure 4.1: Basic components and an example of Petri net model

4. Checking livelocks and deadlocks.

5. Find bottlenecks.

4.1 Petri nets

Petri nets were invented by C. A. Petri, to model and visualize behaviors depicting

parallelism, concurrency, synchronization, and resource sharing [20]. Petri net models are

used for computer architecture and automatic control. In this paper, we apply a Petri net

model to security protocols.

A Petri net consists of three components: places, transitions and arcs. Additionally,

we add tokens (or marks). A Petri net model with marks on places is called a marked Petri

net. Figure 4.1 shows basic components of Petri net model along with an example.

Bipartite graph with arcs between places (transitions) and transitions (places). The

number of places and/or transitions should be neither infinite nor zero [20]. The example

shown in Figure 4.1 is a Petri net representation of Needham-Schroeder consisting of 10

30

places and 5 transitions. Pictorially, a place is represented by a circle and a transition is

represented by a box.

This paper uses the mathematical notation of the Petri net model introduced in

[30]. Each place P1 to P7 has its own initial marking. A mathematical representation of

Petri net is a 5-tuple {P, T, I, O,M0}, where

• P = {P1, P2, ...} is a finite set of places. For example, P of the example in Figure 4.1

is P = {P1, P2, P3, P4, P5, P6, P7, P8, P9, P10}.

• T = {T1, T2, ...} is a finite set of transitions disjoint from P . For example, T of the

example in Figure 4.1 is T = {T1, T2, T3, T4, T5}.

• I is a finite set of input arcs which satisfies Ii ⊆ P × T .

• O is a finite set of input arcs which satisfies Oi ⊆ T × P .

• M0, initial marking is a non-negative vector of length |P | with each element repre-

senting the number of tokens at each place P . For example, M0 of the example in

Figure 4.1 is M0 = [1 0 0 0 0 0 1 0 0 0]T .

A place Pi is called input or output of transition Tj , and Tj is called an upstream

or downstream transition of Pi when an arc (Tj , Pi)((Pi, Tj)) exists in a Petri net. For

example, T1 is an upstream transition of P4, and T3 is a downstream transition of P4. If

a transition does not have any downstream place, the transition is called to be a source

transition. In opposition, if a transition has no upstream place, the transition is called to

be a sink transition.

•
∏

(Pi) ⊆ T : is a set of upstream transitions of place Pi.

• σ(Pi) ⊆ T : is a set of downstream transitions of place Pi.

•
∏

(Tj) ⊆ P : is a set of input places of transition Tj ,

• σ(Tj) ⊆ P : is a set of output places of transition Tj .

31

! "#$%&!'!(#)*+!,-&./!0/12+/21&)!345&%*.6!*.!708!#.5!8&/1*!9&/!

,-&./!

0/12+/21&!
708!:45&%! 8&/1*!9&/!:45&%!

!

!

0&;2&./*#%!
&-&./)!

x y→ !

!

< and x y#1&!&-&./)!

=14:!/>&!)#:&!
#%?>#$&/@A!!

<*A !<**A!

x

y !<***A!

x

y

!

!

!

B&+21)*4.!!

x x x→ → ! !

!

< x *)!#.!&-&./!=14:!

#.!#%?>#$&/@A!
x

!

!
!

7>4*+&!

|x y c d→ → !

!

< , , and x y c d #1&!

&-&./)!=14:!/>&!)#:&!

#%?>#$&/@A!
<*A

x

y

c

d !!<**A!!

x

y

c

d !!<***A

x

y

c

d

!

74.+211&.+C!

||P Q !

!

!<)2??4)&!?14+&))&)!
#1&!5&=*.&5!#)!

:P x c→ !#.5!

:Q a c→ A!
<*A c

x a

!!<**A!! c

x a

!

!

!Figure 4.2: Basic Event Structures Modeling in CSP and Petri Net [30]

4.2 Similarity between CSP and Petri net

P. Sheldon, J. Deng and R. R. Brooks observed the similarities between CSP and

Petri net in [54, 23, 30]. The CSP operators shares many similarities with Petri net graphs.

CSP supports modeling sequential events, events recursion, events choice and events con-

currency, etc. Petri net can also support the same graph models. Figure 4.2 below shows

the corresponding modeling of some basic event structures in CSP and Petri nets.

4.3 Reachability and Karp Miller Trees

A transition can be fired only if all of the input places for this transition contain

at least one mark. Transition Tj is enabled by a Marking M if Mi > w(Pi, Tj) for all

Pi ∈
∏

(Ti). Firing the enabled transition Ti generates a new marking M̄

32

P
1

P
2

T
1

T
2

M
0

P
1

P
2

T
1

T
2

M
1

P
1

P
2

T
1

T
2

M
2

T1 firing

T2 firing

T1 firing

P
1

P
2

T
1

T
2

M
3

T1 firing

T2 firing

T2 firing

Figure 4.3: Transition firing examples of Petri net model

M̄ =

Mi − w(Pi, Tj), if Pi ∈

∏
(Tj)

Mi + w(Tj , Pi), if Pi ∈ σ(Tj)

Mi, otherwise

M̄ is reachable from M . Figure 4.3 shows an example of firing of transition by the

firing rule mentioned above.

Places represent conditions and transitions represent events. Input places of a tran-

sition represent preconditions of the event, and Output places of a transition represent

postconditions of the event. The presence of token(s) at place Pi represents that the pre-

condition associated with Pi is fulfilled. At the initial state M0, both P1 and P2 have more

than one token. Thus, either T1 or T2 can be fired since the precondition of both T1 and T2

are fulfilled. As the result, state M0 produces M1 and M2. At the state M1, either T1 or T2

can be fired. If T1 is fired, M1 produces a new state M3, but if T2 is fired, the next state of

M1 becomes the same state as M0. Thus, it goes to M0 back. At the state M2, only T1 can

33

be fired, and the next state of M1 becomes M0. Unless otherwise stated, the probability of

the transition each arc is 1.

The reachability of all nodes can be represented by a tree structure. The reachability

tree of Petri Net {P, T,W,M0} is a tree with nodes obtained as:

1. M0 is a node of this tree.

2. fire each enabled transition and obtain a new marking M̄ , and connect M0 and M̄ by

an arc.

3. for each M̄ , recursively perform step 2.

The reachability tree of Figure 4.3 is shown in Figure 4.4. The example has only

finite reachability, the tree has the exact same structure of Figure 4.3. The tree covers all

possible states of the Petri net model. Each state Mi has a set of markings of all places:

• M0 = {2, 1}

• M1 = {1, 2}

• M2 = {3, 0}

• M3 = {0, 3}

If a Petri net is not bounded, the reachability graph of the Petri net also has an

infinite number of nodes. The reachability tree constructed by the above procedures may

become infinite for some Petri nets, which make the analysis extremely difficult. Karp

Miller tree guarantees a finite reachability although the reachability of some nodes goes to

infinity. The Karp Millet tree is obtained by merging the same markings in the reachability

tree. To guarantee the finiteness of rechability graph, Karp Miller trees use ω to represent

an infinite number of tokens. The algorithm to produce finite nodes of Karp Miller tree

using ω is as follows:

1. M0 is a node of this tree.

34

M
0

M
1

M
2

M
3

T
1

T
2

T
1

T
1

T
2

T
2

Figure 4.4: The reachability tree of the Petri net example

2. Fire each enabled transition and obtain a new marking M̄ , and connect M0 and M̄

by an arc.

3. If M̄i covers Mi (M̄i > Mi), then substitute the marking of M̄i which covers the

marking of Mi to ω.

4. If the markings of M̄i already exists as Mj in the reachability tree, merge M̄i with

Mj .

5. For each M̄ , recursively perform step 2.

4.4 Connectivity Matrix

One of our objectives in performance tests is finding deadlocks and livelocks of

the security tools. These performance problems can be detected by using the Petri net

of communication protocol models. To find the problems, we need to define connectivity

matrix of Karp Miller tree which shows all possible next states from the current state. In the

previous section we confirm that if the Perti net has a finite length, Karp Miller tree always

35

have finite node length. From the finite length Karp Miller tree, we derive a connectivity

matrix. The connectivity matrix W can be defined as a n× n square matrix, such as:

W =

[r]a1,1 a1,2 a1,3 · · · a1,n

a2,1 a1,1 a1,1 · · · a1,n

a3,1 a1,1 a1,1 · · · a1,n

...
...

...
. . .

...

an,1 an,1 an,1 · · · an,n

When a Karp Miller tree has n nodes of . By using this connectivity matrix, we can

find the next state of Karp Miller trees. The current state of the Karp Miller tree is defined

as Mi = [m1m2m3 · · ·mn] where,

mk = 1 only if current state is at k-th node, otherwise mk = 0. (0 < k ≤ n).

The next state Mi+1 is:

Mi+1 = Mi ×W

[m1,1m1,2m1,3 · · ·m1,n]+ = [m1,1m1,2m1,3 · · ·m1,n]

[r]w1,1 w1,2 w1,3 · · · w1,n

w2,1 w1,1 w1,1 · · · w1,n

w3,1 w1,1 w1,1 · · · w1,n

...
...

...
. . .

...

wn,1 wn,1 wn,1 · · · wn,n

Mi of the current state only has one 1 but Mi+1 can have multiple of 1s because the

vector shows the possibility of next states.

Then, we can find the possibility of M(i+ k) by multiplying k-times of W .

Mi+k = Mi ×W k

0 < k ≤ n The maximum of k is the length of the Karp Miller tree’s node n because

the longest path of node transitions is to pass all nodes.

4.5 Deadlocks and Livelocks

We can find deadlocks and livelock from:∑n
k=1W

k = W 1 +W 2 +W 3 + · · ·+W k

36

If a row j of
∑n

k=1W
k has all ‘0’ where 0 < k ≤ n , it means that there is no

possibility to reach the node j. Therefore, the node j is a deadlock node. Livelocks can

also be found from
∑n

k=1W
k. If an wi,j 6= wj,i they are connected components, and wi,j

and wj,iare livelocks.

4.6 Bottleneck Analysis

A deterministic and stochastic Petri net (DSPN) may be seen as a seven-tuple

of {P, TD, TS ,W,M0, β,Λ}. {P, T,W,M0} is the underlying Petri net with T = TD ∪ TS .

There are two sets of transitions in a DSPN. TD is a set of transitions with determined firing

times specified in β and Ts is the set of transitions with variable firing times, which follow

exponential distribution with rates specified in λ. The firing rates may either be marking-

dependent or marking-independent. The average firing time of firing time of transition TSj

is 1/λj . Pictorially, transitions with constant firing times are drawn as a black boxes and

others are drawn as white boxes. The reachability graph of a stochastic Petri net is identical

to the underlying Petri net.

37

Chapter 5

Distributed Authentication and

Authorization

Parallel distributed systems mostly deal with important data. The security require-

ments of the systems should be different from centralized systems since the centralized

security tools are likely to cause bottlenecks and have a possibility of single point failure

[10]. Many distributed security tools have been developed to keep the system from security

threats; Web of Trust [11], X.509 Public Key Infrastructure[8], WS-SecurityKerberos[40],

and so on[37, 26, 29].

The security tools help the system maintain important security attributes. The

fundamental security issues of parallel distributed systems are authentication and autho-

rization; participants are authenticated; access rights are verified at session initiation and

revoked as necessary [10].

In this chapter, we introduce Kerberos , PERMIS, and Shibboleth. We observe

cryptography protocols and communication procedures of each security tool, getting infor-

mation to build the sequence diagram as the starting point of security and performance

verification.

38

5.1 Kerberos

Kerberos is a distributed authentication system, which was developed for the project

Athena workstation system to manage authentication of a distributed system[39]. This

authentication model relies on symmetric key exchange through the trusted third parties[41].

Key Distribution Center (KDC) which consists of authentication server (AS) and ticket

granting server (TGS), only knows the secret keys of all and issues tickets between its servers

via the client who wants to be authenticated[43, 39]. Since Kerberos can be configured with

multiple TGSs, and service servers, the system can support multiple realm authentication.

The basic assumption of the Kerberos is that session keys and the key management

servers must not be compromised. This ticket-based authentication system enables a client

to prove its identity without knowing the cryptography information of target server. Stan-

dard configuration of Kerberos uses two key management servers: AS and TGS. Also, two

independent tickets are used: TGS ticket and service ticket. The authentication process is

done by exchange tickets among a principal, KDC and service server (SS). Figure 5.1 shows

how the authentication process of Kerberos works.

The authentication procedure is as follows [43]:

1. As the first step, a user on the client enters the username and password on the client.

The client sends the log on authentication request with user name and encrypted

password to AS.

2. AS checks the password and log on information. If the log on information given by the

user is correct, then AS issues TGS ticket which is encrypted with the user’s password.

3. The client decrypts and verifies the ticket received. The ticket includes TGS ticket

but the TGS ticket is encrypted using the secret key of TGS. Thus, the client only

can get the client/TGS session key, and the server’s identity. The client sends the

TGS ticket and authenticator to TGS. The authenticator is the message which only

contains the identity of client, and timestamp.

39

File Server File Server
Client

Authentication

Server (AS)

1.TGS ticket

request

5. Access Request with the ticket

6. File Access

File

Server(FS)

2. Issue

a TGS ticket

Ticket Granting

Server (TGS)

3. Ticket

request

4. Issue

a ticket for file server

Figure 5.1: The system diagram of Kerberos

4. The TGS decrypts and verifies the TGS ticket and the authenticator. If all the

information is correct, TGS issues service a ticket which includes client/SS session

key. The ticket is encrypted with the secret key of the SS.

5. The client decrypts and verifies the service ticket. If it is correct, the client sends the

ticket and an newly generated authenticator encrypted with client/TGS session key

to SS.

6. The SS decrypts and verifies the ticket and the authenticator. If all information is

correct, the SS release client/SS session key encrypted with the client/TGS session

key.

Using symmetric keys, Kerberos has more advantages on cryptography speed and

less computing power over asymmetric key authentication services. Also, current version

of Kerberos can support PKI for session key exchange and ticket forwarding to allow the

request from non Kerberos server which is under the control of authenticated Kerberos

client. Configuring Kerberos with multiple domain and ticket delegation also increases

40

distributed authentication performance, but the fact that Kerberos only allows a single AS

can cause traffic bottleneck.

5.2 PERMIS

PERMIS (PrivilEge and Role Management Infrastructure Standard), developed by

D. W. Chadwick [15], is a distributed authorization system which supports assignment

of both policy and attributes to users. PERMIS supports hierarchical role based access

controls in which policies are organized in a hierarchy and inheritance of policies.

PERMIS provides a Privilege Management Infrastructure (PMI) based on public key

cryptography and X.509 attribute certificates (ACs) to manage user attributes [14]. PER-

MIS does not provide any authentication mechanism, but the system can be integrated with

other existing authentication systems. Since PERMIS supports WS-Security, most types of

security tokens defined by WS-Security specification can be embedded into PERMIS ACs;

such as X.509 certificates, Kerberos, UserID/password credentials, and SAML assertions

[60].

A PERMIS authorization service is configured with many individual components.

This makes PERMIS look complicated, but it helps to achieve hierarchical, strict and precise

access controls. The individual components of PERMIS infrastructure are:

• Policy enforcement point (PEP) is a gateway for the authorization. Subject PEP

collects user certificates, attributes, and access control decision, or sends the access

control decision to object server. The communication for cross domain authorization

can be done by multiple PEPs.

• Policy decision point (PDP) makes authorization decisions based on the attributes

and access control policies. Decision making process contains two categories of rules,

trust related rules (Credential Validation Policy) and privilege related rules (Access

Control Policy). PDP informs PEP which policies to include with the user request.

41

!"#$%&$'($'%!"#$%&$'($'%
)#"$*+%

&,-.$/+%%

010%

234//$55%%

6$7,$5+%

283%!"#$%4//$55%

9-.$/+%&$'($'

:9&;%

)#"$*+%

0<0%

9-.$/+%%

010%

=>'?$+%

0<0%

)@&%)A&%

830B#"/C%

6$7,$5+%

D31$/"5"B*%

E3)'F*G>#%%

6$7,$5+%

H31$/"5"B*%

I3)'F*G>#%%

A$'"J/>GB*%

6$7,$5+%

K31$/"5"B*%

L30B#"/C%

6$7,$5+%

2M31$/"5"B*%

N31$/"5"B*%6$7,$5+%

2234//$55%6$7,$5+%%

1$/"5"B*%

Figure 5.2: The system diagram of PERMIS

• Credential issuing service(CIS) verifies user information and issues certificates when

the user provides CIS with correct identity through client PEP.

• Credential validation service(CVS) verifies the user credentials received from target

PEP. CVS informs PEP which credentials from which issuing attribute authorities

(AA) are trusted by the object server. AA is an entity trusted by one or more entities

to create and sign ACs. A certification authority(CA) may also be an AA [5].

• Credentials and policies repository (CPR) uses LDAP as a network accessible reposi-

tory to store and manage policies including X.509 ACs. CPR sends the ACs to PDP

when they need to make authorization decision [12].

Figure 5.2 shows how PERMIS authorization process works over multiple domains.

The details of the authorization process are as follow:

1. The protocol starts from sending an access request from client user to client PEP. The

access request includes a set of attributes issued by AA.

2. The PEP send the ACs to PDP.

42

3. PDP verifies the ACs. If the ACs are validated, the PDP informs client PEP which

policies to include with the user request.

4. Client PEP requests a new certificate to CIS.

5. CIS issues a new AC which includes the attributes of user and target resources.

6. Client PEP sends the user’s request with new ACs to target PEP.

7. Target PEP sends the ACs received from client PEP to CVS for credential validation.

8. CVS returns the validation result.

9. If the ACs are validated, PEP send the validated attributes along with date and time

stamp to the PDP for access control decision.

10. PDP returns access control decision.

11. If the decision is granted, the PEP allows the user access, otherwise the access is

rejected.

To manage complicated policies, PERMIS infrastructure provides GUI policy editor

for system administrator to easily compose and edit policies. Policies are written in XML

format with embedded X.509 ACs and stored into LDAP directories of CPR. PERMIS also

provides the attribute certificate manager(ACM) tool which allows administrators to create

new ACs or assign attributes to users. Administrator also can modify or revoke existing

ACs in LDAP repositories.

5.3 Shibboleth

Shibboleth is an integration solution for federated authentication and authorization,

developed as a middleware of Internet2 project. Similar to PERMIS, Shibboleth does not

provide any internal authentication service [42]. The objective of Shibboleth is achieving

single sign on and exchange of the authentication and authorization information among

43

!"#$%&'(

)*+,-"#*(.!")/(

!"#$%&'(

)*+,-"#*(.!")/(

0-1#(2#*,#*(0-1#(2#*,#*(

!"#$%&'(

)*+,-"#*(.!")/(

34(0-1#(566#77(

87#*(91-#$&(

:4(!"#$%&'(

;#*-<6=%+$(

>#?@#7&(

A4(!"#$%&'(;#*-<6=%+$(

B42#*,-6#(>#?@#7&(

C4!"(;#*4>#?@#7&(

D42#*,-6#(>#?@#7&(

&(

#7&(&(

2#*,-6#(

)*+,-"#*.2)/(

Figure 5.3: The system diagram of Shibboleth

the federated institutions[24]. To achieve this goal, Shibboleth provides related functionali-

ties such as federated administration, heterogeneous authentication systems, access control

based on attributes, and a strong emphasis on user-managed privacy [27].

The security protocols of Shibboleth relies on security assertion markup language

(SAML) for the communication security and data management[42]. SAML is a security

extension of extensible markup language (XML). In 2005, SAML 2.0 became an data ex-

change standard of organization for the advancement of structured information standards

(OASIS). SAML 2.0 supports both XML encryption and XML signature [4]. Shibboleth

uses only XML signature for SAML assertions and SAML profile to describe specific use

scenarios [27]. A simple configuration of Shibboleth includes an Identity provider (IdP)

which creates, manages, and verifies user certificates and attributes, and a service provider

(SP) which manages the restricted service. In order for Shibboleth to work, the IdP and

SP must trust each other [36]. Figure 5.3 shows the configuration of Shibboleth.

The authentication sequence is as follows:

1. Client sends a request and user attributes to access the restricted service provided by

44

SP.

2. SP tries to find the certificates of the client. If the certificate does not exist in SP. SP

redirect the service request with attributes verification request to IdP.

3. Client sends the request packet to IdP.

4. IdP verifies the request. If the user attributes are valid, IdP redirects the service

request with verification result to SP.

5. Client sends send the request and verification results.

6. SP allows the client the restricted service.

45

Chapter 6

Implementation

In this chapter, we apply the security verification and performance evaluation method-

ologies to Kerberos, PERMIS, and Shibboleth to find security vulnerability and performance

bottlenecks. To apply the test methodologies, we should clarify the cryptography methods

and communication processes of each security tool.

The CSP operators shares many similarities with PN graphs. CSP supports mod-

eling of sequential events, events recursion, events choice and events concurrency, etc. PN

also can support same graph models. However, modeling security protocols using CSP is

too complicated and prone to error as well as, converting from CSP to PN creates enormous

graphs to analyze the security protocol.

In chapter 3, we confirmed that sequence diagram can directly be converted into

Casper scripts. We also observed the similarities between sequence diagram and PN. Con-

verting sequence diagram directly to Casper scripts and PN graphs overcomes these disad-

vantages. Figure 6.3 shows the overall process of security and performance verification.

6.1 UML sequence diagram

We use sequence diagram of Unified Modeling Language (UML) 2.0 to clarify the

security and communication process specification. UML was developed for designing and de-

46

0. -> A : B
1. A -> B : {na, A}{PK(B)}
2. B -> A : {na, nb}{PK(A)}
3. A -> B : {nb}{PK(B)}

-- Secrets in the protocol
ALL_SECRETS_0 = Nonce
ALL_SECRETS = addGarbage_
(ALGEBRA_M::applyRenamingToSet
(ALL_SECRETS_0))

-- Define type of signals, and declare signal
channel
datatype Signal =

Claim_Secret.ALL_PRINCIPALS.ALL_SECRETS
.Set(ALL_PRINCIPALS) |

Running1.HONEST_ROLE.ALL_PRINCIPALS.AL
L_PRINCIPALS.Nonce.Nonce |

Sequence Diagram

A B

{na, A}PK(B)

{na, nb}PK(A)

{nb}PK(B)

Casper Script CSP FDR

<?xml version="1.0"?>
<petrinet>
 <!-- Client Buffer-->
 <place>
 <pname>1</pname>

 <token>1</token>
 </place>
<transition>
 <tname>5</tname>
 <pfrom>5</pfrom>

 <pfrom>8</pfrom>
 <pto>9</pto>
 </transition>
</petrinet>

XML data structure Petri net Karp Miller Tree

P
1

P
2

P
3

P
4

P
5

P
6

P
7

P
8

P
9

T
1

T
2

T
3

T
4

T
5

Figure 6.1: Overall process of security verification and performance evaluation

Notation Description

tx timestamp of entity x
Kx encryption key of entity x
Kx,y Session key between entity x and y

{M}Kx message M encrypted with key Kx

Table 6.1: Mathematical Notation for Security Protocols

scribing object-oriented program in software engineering. The sequence diagram of UML is

designed for modeling the interactions between objects or entities in the sequential order[7].

[44] shows how to use UML for designing a security model. Using the sequence diagram we

can describe both the communication processes and cryptography information of security

tools in a diagram. To represent security protocol using UML sequence diagram, we use

mathematical notation as shown in Table 6.1.

Several types of sequence diagrams exist, but we only use system level sequence

diagrams to describe cryptography information. More information on various sequence

diagram and how the system level sequence diagrams are different from service level sequence

diagrams can be found from [6].

47

The rest of the chapter is organized as follows: Section 6.2 shows the security

analyzation of each distributed authentication and authorization tool. The section mainly

explains sequence diagrams, Casper scripts of Kerberos, PERMIS, and Shibboleth. The

FDR results of the security protocols are dealt with in chapter 7. Section 6.3 shows how to

write the XML data structure designed for describing security protocols. It also explains

the design of the performance analysis program which generates PN graphs and Karp Miller

tree graphs from the XML data structure scripts. This section shows the PN graphs and

Karp Miller trees of Kerberos, PERMIS, and Shibboleth. The results of locating deadlocks,

livelocks, and bottlenecks of each protocol are shown in chapter 7.

6.2 Security verification

System level sequence diagram of UML can simply depict security protocols includ-

ing the information of communication process and cryptography information. Casper also

can precisely describe security protocols in abstract language, however writing casper scripts

without their sequence diagrams is prone to make errors. To reduce implementation errors,

we draw sequence diagram first. In section 6.3, we will use the sequence diagrams to write

XML protocol descriptions for each protocol.

6.2.1 Kerberos

In section 5.1, we summarized the service level protocol information of Kerberos,

but we need more information to describe the detail of cryptography information. The

cryptography information of real Kerberos protocol can be found in [56]. First we define

the server names used for the sequence diagram in table 6.2.

Kerberos uses two types of credentials; a ticket and an authenticator. Both are

used for the authentication between two entities. The difference between the ticket and the

authenticator is the lifetime. The ticket can be repeatedly used until the ticket expires, but

the authenticator can only be used once. The ticket contains both entity names, IP address

48

Notation Description

C client name
AS authentication server name

TGS TGS server name
SS service server name

Table 6.2: Mathematical Notation used for Kerberos

of the client, a timestamp, a lifetime, and a random session key between the two entities.

In this paper, we do not use the IP address of the client, and lifetime of the key. This ticket

is encrypted with the key of destination entity. In Kerberos system, since the user of client

has only its own key, the user can pass the ticket but cannot decrypt the ticket. A ticket

Tx,y is for y to grant access control to x can be defined as follows;

Tx,y = {x, y, tx,Kx,y}Ky

x is the name of source entity, and y is the name of destination entity. tx represents

the timestamp of the ticket issuing time, and Kx,y is the random session key between x and

y. The ticket is encrypted with the secret key of y. The message structures of Kerberos

authenticator Ax can be defined as follows:

Ax,y = {x, tx}Kx,y

The authenticator should be encrypted with the session key between x and y. In this

paper, our authenticator includes only the name of source entity and the timestamp. The

authenticator is encrypted by the session key. Figure 6.2 shows the system level sequence

diagram of Kerberos adding the ticket and the authenticator information to the diagram

shown in Figure 5.1 of Chapter 5. The sequence diagram includes both communication

processes and cryptography messages. The communication procedure was described in

section 5.1.

As mentioned above, the sequence diagram can directly be translated into Casper

script. One problem is current version of Casper cannot compile a model with more than

49

Service ServerTGSASClient (C)

C, TGS

TC,TGS, AC,TGS, SS

{KC,TGS, TC,TGS}KC

{KC,SS,TC,SS}KC,TGS

TC,SS, AC,SS

Authentication Results

Figure 6.2: System level sequence diagram of Kerberos

three servers. We therefore break the communication protocol into several parts with over-

lapping. Kerberos can be divided into two parts. The full Casper scripts of Kerberos are

shown in Appendix D.

6.2.2 PERMIS

The service level descriptions was explained in section 5.2. We add cryptography

information of PERMIS into the sequence diagram to build the security verification model.

The cryptography information of PERMIS protocol can be found from [13, 21, 59, 22].

PERMIS uses two cryptography techniques; WS-TRUST security token and secure hash

function. WS-TRUST is used for credential validation of subject. and encrypted by public

key of CVS. Secure hash is used for digital signature of SAML attribute assertion. The

structure of SAML attribute structure is shown in Table 6.3.

The issuer field is optional. The entity name could be subject name or target

object name. Since PERMIS uses Simple Public Key Infrastructure (SPKI) based on digital

50

Subject or Object Attribute ID Value Data Type Issuer

Table 6.3: The Structure of SAML Attribute Assertion in PERMIS [22]

Target PEPClient PEP Subject PDP

Resource(Target PEP, value, DataType), Subject(Client PEP, value, DataType)

Decision

Resource(Target PEP, value, DataType), Subject(Client PEP, value, DataType)

CIS

Resource(Target PEP, value, DataType), Subject(Client PEP, value, DataType), {WS-TRUST Token}{PKey(CVS)}

Resource(Target PEP, value, DataType), Subject(Client PEP, value, DataType), {WS-TRUST Token}{MD5}

CVS

{WS-TRUST Token}{MD5}

{WS-TRUST Token}{PKey(CVS)}

Result

Object PDP

Resource(Target PEP, value, DataType), Subject(Client PEP, value, DataType)

Decision

Access privilidge granted

Figure 6.3: System level sequence diagram of PERMIS

signature technology, the public key signature encrypted by secure hash function comes with

the attributes [14].

Converting the sequence diagram of PERMIS into Casper scripts need more tech-

niques than used in Kerberos. The Casper scripts of PERMIS require the implementation

of WS-TRUST token, and MD5 secure hash. We substitute the WS-TRUST token with

simple public key encryption, and MD5 hash with internal hash function. The commu-

nication protocol of PERMIS is divided into three parts and implemented. Figure 6.3 is

the system level sequence diagram of PERMIS based on the security information. The full

Casper scripts of PERMIS can be found in Appendix D.

6.2.3 Shibboleth

The service level description was explained in section 5.3. Shibboleth has only two

service entities; Identity provider (IdP) and Service provider (SP). The communication

message protocol and security is done by using SAML assertions. Shibboleth We add

cryptography information of Shibboleth into the sequence diagram to build the security

51

EL samlp:Request MUST appear once and only once
ATT RequestID
ATT MajorVersion MUST equal “1”
ATT MinorVersion MUST equal “0”
ATT IssueInstant MUST equal the current GMT date and time

EL samlp:RespondWith* MAY appear zero or more times
MUST connote a SAML AttributeStatement, if used

EL ds:Signature? MAY contain an XML signature
MAY include an X.509 certificate

EL samlp:AttributeQuery
ATT Resource SHOULD contain the target URL, if applicable

EL saml:Subjectt Subject information

Table 6.4: Attribute Query Message (AQM) Common Syntax [24]

verification model. The document [24] written by M. Erdos contains detailed information

on Shibboleth communication protocol and message structure. Shibboleth uses two different

types of messages; attribute query message(AQM) and attribute response message(ARM).

All Shibboleth protocols must share the AQM and ARM. The structure of AQM and ARM

attribute structure is shown in table 6.4 and 6.5.

We only focus on the signature fields. The signature field contains X.509 certificate

or XML signature. We implement the signatures using public key signing. Figure 3 is the

system level sequence diagram of PERMIS based on the security information. The full

Casper scripts of Shibboleth can be found in Appendix D.

6.3 Performance Evaluation

For the performance test, we developed a test tool named “Performance Evaluation

Tools for Security protocols” (PETS). The program can generate Petri net graphs from

XML data structures and convert it into Karp Miller trees. The program can calculate the

number of deadlocks and livelocks of the Karp Miller Tree.

PETS software consists of three classes: [PETS], [PetriNet], and [KManalysis]

52

EL samlp:Request MUST appear once and only once
ATT RequestID
ATT InResponseTo MUST equal RequestID in AQM
ATT MajorVersion MUST equal “1”
ATT MinorVersion MUST equal “0”
ATT IssueInstant MUST equal the current GMT date and time

EL ds:Signature? MAY contain an XML signature
MAY include an X.509 certificate

EL saml:Assertion

ATT AssertionID
ATT MajorVersion MUST equal “1”
ATT MinorVersion MUST equal “0”
ATT Issuer

ATT IssueInstant SHOULD equal
GMT date and time of statement generation

EL saml:AttributeStatement MUST appear once and only once
EL saml:Subject Subject information
EL saml:Attribute* Subject information
EL Isaml:Conditions

ATT NotBefore SHOULD be omitted, MUST be in the past
ATT NotOnOrAfter MAY be used to signify attribute expiration

EL ds:Signature? MAY contain an XML signature
MAY include an X.509 certificate

Table 6.5: Attribute Response Message (ARM) Common Syntax [24]

53

User Agent Service Provider Identity Provider

GET / HTTP/1.1, SP

Cookie _sibstate_XXX

Location, _shibsessionXXX cookie, _saml_idp cookie

Respond to the first request : Location, _shibsessionXXX cookie, _saml_idp cookie

Location(IdP): shire, time, target, providerID(SP)

GET shire, time, target, providerID(SP)

Authorization: Basic, hash (credential)

HTTP1.1 200 OK

SessionID, Path

SP, action, Target(decrypted), Client authentication request(digital signed)

IdP, Cookie_sibstate_XXX(C), target, saml_idp_cookie

Location, _shibsessionXXX cookie, _saml_idp cookie

Figure 6.4: System level sequence diagram of Shibboleth

54

classes. [PETS] class is the main class. The class has the functionalities as follow:

• Read petrinet XML data structures.

• Draw petrinet graphs from XML data structure.

• Generate Karph Miller trees from the petrinets using [KManalysis] class.

• Draw Karph Miller trees using [PetriNet] class.

The Petri net graphs and Karp Miller trees of each protocol can be found in Ap-

pendix B and C. The rest of the chapter shows the techniques that we used for evaluating

the performance of security tools.

6.3.1 XML data structure for protocol description

XML data structure makes it easier to design a complicated data base model. The

tagging style of XML looks similar to HTML, but XML allows any type of tags unlike

HTML [38]. In this paper, we define a data structure of XML for describing Petri net

graphs.

The data structure begins with < petrinet > and end with < /petrinet >. The

petrinet structure include two sections, < place > · · · < /place > are for defining place

nodes of Petri nets, < transition > · · · < /transition > are for transition nodes. The place

section includes < token > · · · < /token > which indicates that the number tokens the

place has. Each transition node of the the transition section has arc definitions. There are

two types of arcs: upstream and downstream. Upstream arcs are defined by < pfrom >

· · · < /pfrom >, and downstream arcs are defined by < pto > · · · < /pto >. The following

code is a part of Needham-Schroeder protocol that we have used as an example.

<?xml v e r s i on =”1.0”?>

<!−− Place d e f i n i t i o n −−>

<pe t r in e t>

<!−− Cl i en t Node −−>

55

<place>

<pname>1</pname>

<token>1</token>

</place>

<place>

<pname>2</pname>

<token>0</token>

</place>

<!−− Trans i t i on d e f i n i t i o n −−>

<t r a n s i t i o n>

<tname>1</tname>

<pfrom>1</pfrom>

<pto>2</pto>

<pto>3</pto>

</t r a n s i t i o n>

<t r a n s i t i o n>

<tname>2</tname>

<pfrom>2</pfrom>

<pfrom>4</pfrom>

<pto>5</pto>

</t r a n s i t i o n>

</pe t r in e t>

56

Chapter 7

Test Results

By using the methodologies that we introduced in previous chapters, we verify the

security and performance of Kerberos, PERMIS, and Shibboleth. The purpose of the se-

curity test is to ensure the authentication between the client and every service entity. The

purpose of the performance test is finding deadlocks and livelocks in each protocol.

7.1 Security test result

We inject possible malicious attacks in the Casper scripts. The table 7.1, 7.2, and

7.3 shows summary of the attacks and test results. From the test, we found no security

vulnerability on the protocols against the attacks we injected. Detailed results of each

security tool can be found in appendix A.

7.1.1 Performance Test Results

We have checked whether Kerberos, PERMIS, or Shibboleth has any livelock or

deadlock on its protocol by analyzing each Petri net. The Petri net graph of each security

tool can be found in appendix B. Also, Karp Miller trees of Kerberos, PERMIS, and Shibbo-

leth generated with two initial tokens can be found in appendix C. Since we cannot perform

bottleneck tests with current test tool, we cannot define the number of initial tokens in the

57

Table 7.1: Security Test result of Kerberos

Protocol Test Type Test Spec. Result

Kerberos Timed Agreement Test TimedAgreement(C, TGS, 2, []) OK
TimedAgreement(C, DS, 2, []) OK

Agreement Test Agreement(C, AS, []) OK
Agreement(AS, C, []) OK
Agreement(TGS, C, []) OK

C: Client, AS: Authentication Server, TGS: Ticket Granting Server

Table 7.2: Security Test result of PERMIS

Protocol Test Type Test Spec. Result

PERMIS Secrecy Test Secret(SPDP,rsc,[CIS, CPEP]) OK
Secret(CIS,wst,[SPDP, CPEP]) OK
Secret(CPEP, rsc, [TPEP]) OK
Secret(CPEP, wst, [CVS]) OK
Secret(OPDP, rsc, [TPEP, CPEP]) OK
Secret(OPDP, na, [CPEP, TPEP]) OK

Agreement Test Agreement(SPDP, CIS,[]) OK

CPEP: Client Policy Enforcement Point, SPDP: Subject Policy Decision Point
TPEP: Target Policy Enforcement Point, OPDP: Object Policy Decision Point
CIS: Credential Issuing Server, CVS: Credential Verification Server

Table 7.3: Security Test result of Shibboleth

Protocol Test Type Test Spec. Result

Shibboleth Secrecy Test Secret(SP,na,[IP]) OK
Secret(IP,nb,[SP]) OK

Agreement Test Agreement(SP, IP,[]) OK
Agreement(IP, SP,[]) OK

SP: Service Provider, IP: Identity Provider

worst condition. Therefore, we have performed the deadlock and livelock test five times for

each protocol with different number of initial tokens. The table 7.4 shows the summary of

58

the test results.

Table 7.4: Livelock and Deadlock Test Results

Protocol Test Type Token 1 2 3 4 5

Kerberos Livelock No No No No No
Deadlock No No No No No

PERMIS Livelock No No No No No
Deadlock No No No No No

Shibboleth Livelock No No No No No
Deadlock No No No No No

59

Chapter 8

Conclusions and Future Work

We have introduced distributed authentication and authorization protocols for the

security of distributed file systems. We examined details of the background knowledge on

test tools and various distributed authentication and authorization tools.

We showed how Casper, CSP, and FDR can be used for the security verification of

distributed authentication and authorization tools. We newly implemented the performance

verification software based on Petri nets and Karp Miller tree analysis, and showed the

security and performance test results of Kerberos, Shibboleth, and PERMIS by using the

software tools. From the test results we found no security issue nor performance lack.

However, we haven’t finished bottleneck test yet since the test requires measuring real

execution time of each protocol.

The next step of this study is finding bottlenecks of each security tool, and apply

the test methodologies to more distributed authentication and authorization tools.

60

Appendices

61

Appendix A Security Test Results on FDR

A.1 Kerberos

Sta r t i ng FDR

Checking /mnt/ hg f s /Documents/03 Research /03 CU/03 P2PFileSystem/03 Casper−FDR

/01 Kerberos /Kerberos1of2 . csp

Checking a s s e r t i o n AUTH1M: : AuthenticateINITIATORToSERVERAgreement [T= AUTH1M

: : SYSTEM 1

No attack found

Checking a s s e r t i o n AUTH2M: : AuthenticateSERVERToINITIATORAgreement [T= AUTH2M

: : SYSTEM 2

No attack found

Checking a s s e r t i o n AUTH3M: : AuthenticateINITIATORToRESPONDERTimedAgreement2 [T

= AUTH3M: : SYSTEM 3

No attack found

Checking a s s e r t i o n STOP [T= SYSTEM\ d i f f (Events , { | INTRUDERM: : v e r i f y | })

No attack found

Done

S ta r t i ng FDR

Checking /mnt/ hg f s /Documents/03 Research /03 CU/03 P2PFileSystem/03 Casper−FDR

/01 Kerberos /Kerberos2of2 . csp

Checking a s s e r t i o n AUTH1M: : AuthenticateSERVERToINITIATORAgreement [T= AUTH1M

: : SYSTEM 1

No attack found

Checking a s s e r t i o n AUTH2M: : AuthenticateINITIATORToRESPONDERTimedAgreement2 [T

= AUTH2M: : SYSTEM 2

62

No attack found

Checking a s s e r t i o n STOP [T= SYSTEM\ d i f f (Events , { | INTRUDERM: : v e r i f y | })

No attack found

Done

A.2 PERMIS

Sta r t i ng FDR

Checking /home/madtosh/Documents/03 Research /03 CU/03 P2PFileSystem/03 Casper−

FDR/02 Permis / Fina l /Permis1of3 . csp

Checking a s s e r t i o n SECRETM: : SECRET SPEC [T= SECRETM: : SYSTEM S

No attack found

Checking a s s e r t i o n SECRETM: : SEQ SECRET SPEC [T= SECRETM: : SYSTEM S SEQ

No attack found

Checking a s s e r t i o n AUTH1M: : AuthenticateSERVERToRESPONDERAgreement [T= AUTH1M

: : SYSTEM 1

No attack found

Done

S ta r t i ng FDR

Checking /home/madtosh/Documents/03 Research /03 CU/03 P2PFileSystem/03 Casper−

FDR/02 Permis / Fina l /Permis2of3 . csp

Checking a s s e r t i o n SECRETM: : SECRET SPEC [T= SECRETM: : SYSTEM S

No attack found

Checking a s s e r t i o n SECRETM: : SEQ SECRET SPEC [T= SECRETM: : SYSTEM S SEQ

No attack found

Done

63

Sta r t i ng FDR

Checking /home/madtosh/Documents/03 Research /03 CU/03 P2PFileSystem/03 Casper−

FDR/02 Permis / Fina l /Permis3of3 . csp

Checking a s s e r t i o n SECRETM: : SECRET SPEC [T= SECRETM: : SYSTEM S

No attack found

Checking a s s e r t i o n SECRETM: : SEQ SECRET SPEC [T= SECRETM: : SYSTEM S SEQ

No attack found

Done

A.3 Shibboleth

Sta r t i ng FDR

Checking /home/madtosh/Documents/03 Research /03 CU/03 P2PFileSystem/03 Casper−

FDR/03 Sh ibbo l e th / Shibbo le th . csp

Checking a s s e r t i o n SECRETM: : SECRET SPEC [T= SECRETM: : SYSTEM S

No attack found

Checking a s s e r t i o n SECRETM: : SEQ SECRET SPEC [T= SECRETM: : SYSTEM S SEQ

No attack found

Checking a s s e r t i o n AUTH1M: : AuthenticateRESPONDERToSERVERAgreement [T= AUTH1M

: : SYSTEM 1

No attack found

Checking a s s e r t i o n AUTH2M: : AuthenticateSERVERToRESPONDERAgreement [T= AUTH2M

: : SYSTEM 2

No attack found

Done

64

Appendix B Petri Net Graphs

B.1 Kerberos

Client

Auth Request

Session Key...

Authentication

Server Buffer

Verification

Decryption

Verification

Encryption

Auth Request

Session Key...

Verification

Decryption

Verification

Encryption

Auth Request

Session Key...

Verification

Decryption

Verification

Encryption

Ticket Granting

Server Buffer

Service Server

Buffer

65

B.2 PERMIS

Client

Authorization

Request

Credential Request

Subject PDP

Verification

Decryption

Verification

Encryption

Credential

Request

Credentials

Verification
Decryption

Verification

Encryption

Credential

Issuing Server

Authorization

Request

Target PEP

Verification

Decryption

Verification

Encryption

Credential

Validation

Request

Credentials

Verification
Decryption

Verification

Encryption

Credential

Validation

Server

Access Control

Request

Access Control

Decision

Verification
Decryption

Verification

Encryption

Object PDP

Decryption

Verification

Encryption

66

B.3 Shibboleth

Client

GET /HTTP/1.1

Cookie_sibstate_XXX

Service Provider

Verification

Decryption

Verification

Encryption

GET shire, time,

provider ID

SAML response

Verification

Decryption

Verification

Encryption

Identity Provider

67

Appendix C Karp-Miller Trees Graphs

C.1 Kerberos

m0

m1

T1

m2

T1

m3

T2

m4

T2

T1

m5

T3

m6

T3

T1

m7

T4

m8

T2

m9

T4

T1

m10

T5

m11

T3

m12

T4

T2

m13

T5T1

m14

T6

m15

T4

T3

m16

T5T2

m17

T6T1

m18

T7

m19

T4

m20

T5

T3

m21

T6T2

m22

T7T1

m23

T8

m24

T5

T4

m25

T6T3

m26

T7T2

m27

T8T1

m28

T9

m29

T5

m30

T6

T4

m31

T7T3

m32

T8T2

m33

T9

T1

m34

T10

m35

T6

T5

m36

T7T4

m37

T8T3

m38

T9

T2

m39

T10 T1

m40

T11

m41

T7

T5

m42

T8T4

m43

T9

T3

m44

T10 T2

m45

T11

T12

T1

m46

T6

m47

T8

T5

m48

T9

T4

m49

T10 T3

m50

T11

T12

T2

m51

T7

m52

T8

T6

m53

T9

T5

m54

T10 T4

m55

T11 T12T3

m56

T8

T7

m57

T9

T6

m58

T10 T5

m59

T11 T12T4

m60

T8

m61

T9

T7

m62

T10 T6

m63

T11 T12T5

m64

T9

T8

m65

T10 T7

m66

T11 T12T6

m67

T9

m68

T10

T8

m69

T11 T12T7

m70

T10

T9

m71

T11 T12T8

m72

T11

T12

T9

T12

m73

T10

T12

m74

T11

T12

Figure 1: Karp-Miller Tree of Kerberos with Two initial tokens

68

C.2 PERMIS

m0

m1

T1

m2

T1

m3

T2

m4

T2

T1

m5

T3

m6

T3

T1

m7

T4

m8

T2

m9

T4

T1

m10

T5

m11

T3

m12

T4

T2

m13

T5 T1

m14

T6

m15

T4

T3

m16

T5 T2

m17

T6 T1

m18

T7

m19

T4

m20

T5

T3

m21

T6 T2

m22

T7 T1

m23

T8

m24

T5

T4

m25

T6 T3

m26

T7 T2

m27

T8 T1

m28

T9

m29

T5

m30

T6

T4

m31

T7 T3

m32

T8 T2

m33

T9

T1

m34

T10

m35

T6

T5

m36

T7 T4

m37

T8 T3

m38

T9

T2

m39

T10T1

m40

T11

m41

T7

T5

m42

T8 T4

m43

T9

T3

m44

T10T2

m45

T11T1

m46

T12

m47

T6

m48

T8

T5

m49

T9

T4

m50

T10T3

m51

T11T2

m52

T12T1

m53

T13

m54

T7

m55

T8

T6

m56

T9

T5

m57

T10T4

m58

T11T3

m59

T12T2

m60

T13T1

m61

T14

m62

T8

T7

m63

T9

T6

m64

T10T5

m65

T11T4

m66

T12T3

m67

T13T2

m68

T14T1

m69

T15

m70

T8

m71

T9

T7

m72

T10T6

m73

T11T5

m74

T12T4

m75

T13T3

m76

T14T2

m77

T15T1

m78

T16

m79

T9

T8

m80

T10T7

m81

T11T6

m82

T12T5

m83

T13T4

m84

T14T3

m85

T15T2

m86

T16T1

m87

T17

m88

T9

m89

T10

T8

m90

T11T7

m91

T12T6

m92

T13T5

m93

T14T4

m94

T15T3

m95

T16T2

m96

T17T1

m97

T18

m98

T10

T9

m99

T11T8

m100

T12T7

m101

T13T6

m102

T14T5

m103

T15T4

m104

T16T3

m105

T17T2

m106

T18T1

m107

T20

m108

T11

T9

m109

T12T8

m110

T13T7

m111

T14T6

m112

T15T5

m113

T16T4

m114

T17T3

m115

T18T2

m116

T20

T19

T1

m117

T12

T9

m118

T13T8

m119

T14T7

m120

T15T6

m121

T16T5

m122

T17T4

m123

T18T3

m124

T20

T19

T2

m125

T13

T9

m126

T14T8

m127

T15T7

m128

T16T6

m129

T17T5

m130

T18T4

m131

T20T19 T3

m132

T14

T9

m133

T15T8

m134

T16T7

m135

T17T6

m136

T18T5

m137

T20T19 T4

m138

T15

T9

m139

T16T8

m140

T17T7

m141

T18T6

m142

T20T19 T5

m143

T16

T9

m144

T17T8

m145

T18T7

m146

T20T19 T6

m147

T17

T9

m148

T18T8

m149

T20T19 T7

m150

T18

T9

m151

T20T19 T8

m152

T20

T19

T9

T19

m153

T10

T19

m154

T11

T19

m155

T12

T19

m156

T13

T19

m157

T14

T19

m158

T15

T19

m159

T16

T19

m160

T17

T19

m161

T18

T19

m162

T20

T19

Figure 2: Karp-Miller Tree of PERMIS with Two initial tokens

69

C.3 Shibboleth

m0

m1

T1

m2

T1

m3

T2

m4

T2

T1

m5

T3

m6

T3

T1

m7

T4

m8

T2

m9

T4

T1

m10

T5

m11

T3

m12

T4

T2

m13

T5T1

m14

T6

m15

T4

T3

m16

T5T2

m17

T6T1

m18

T7

m19

T4

m20

T5

T3

m21

T6T2

m22

T7T1

m23

T8

m24

T5

T4

m25

T6T3

m26

T7T2

m27

T8

T1

m28

T9

m29

T5

m30

T6

T4

m31

T7T3

m32

T8

T2

m33

T9 T1

m34

T2

m35

T6

T5

m36

T7T4

m37

T8

T3

m38

T9 T2 T1

m39

T3

m40

T7

T5

m41

T8

T4

m42

T9 T3

T10

T1

m43

T6

m44

T8

T5

m45

T9

T10

T4

m46

T2

m47

T7

m48

T8

T6

m49

T9 T5

m50

T2 T10T4

m51

T3

m52

T8

T7

m53

T9 T6

m54

T2 T5

m55

T3 T10T4

m56

T8

m57

T9

T7

m58

T2 T6

m59

T3 T10T5

m60

T9

T8

m61

T2 T7

m62

T3 T10T6

m63

T2

m64

T9

T8

m65

T3 T10T7

m66

T3

m67

T9 T2

T10

T8

T10

m68

T9 T3

T10

m69

T2

T10

m70

T3

T10

Figure 3: Karp-Miller Tree of Shibboleth with Two initial tokens

70

Appendix D Casper Scripts

D.1 Kerberos (1 of 2)

−− Kerberos 5 p ro to co l (part 1/2) by Seok B. Yun

−−−−−−−−−−−−−−−−−−−−−−

−− Purpose : keep sec racy between AS<−>TGS<−>DS

−− Abbrev iat ions

−−−−−−−−−−−−−−−−

−− C : c l i e n t

−− DS : Data Server

−− TGS : Ticket Granting Server

−− AS : Authent i cat ion Server

−− Addr : address (not used)

−− L i f e : l i f e t im e o f t i c k e t (not used)

−− Key(x) : x ’ s p r i va t e key

−− Kxy : Se s s i on Key f o r x and y

−− Txy : x ’ s t i c k e t to use y

−− Ax : Authent icator f o r x

−− Ticket De f i n i t i o n

−−−−−−−−−−−−−−−−−−−−

−− {DS, C, Addr , timestamp , l i f e , Ksc}Key(DS)

−− Authent icator De f i n i t i o n

−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− {C, Addr , timestamp}Ksc

−−−−−−−−−−−−−−−−−

−− CODE STARTS −−

−−−−−−−−−−−−−−−−−

#Protoco l d e s c r i p t i o n

71

−− 1 . Gett ing TGS t i c k e t (C <−> AS)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

0 . −> C : AS, TGS

1 . C −> AS : C, TGS

2 . AS −> C : {C, TGS, ts1 , kct }{SKey(TGS) } % Tct

3 . AS −> C : { kct }{SKey(C) }

−− 2 . Request ing a Se rv i c e t i c k e t s (C −> TGS)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

4 . C −> TGS : Tct % {C, TGS, ts1 , kct }{SKey(TGS) }

[t s1==now or t s1+1==now]

5 . C −> TGS : {C, t s2 }{ kct }

[t s2==now or t s2+1==now]

#Free v a r i a b l e s

C, AS, TGS : Agent

SKey : Agent −> SecretKey

kct : SessionKey

ts1 , t s2 : TimeStamp

−−va : Nonce

InverseKeys = (SKey , SKey) , (kct , kct)

#Proce s s e s

INITIATOR(C) knows SKey(C)

RESPONDER(TGS) knows SKey(TGS)

SERVER(AS) knows SKey(C) , SKey(TGS) gene ra t e s kct

#Sp e c i f i c a t i o n

Agreement (C, AS, [])

Agreement (AS, C, [])

TimedAgreement (C, TGS, 2 , [])

72

#Actual v a r i a b l e s

Cl ient , AuthServer , TGServer , Mallory : Agent

Kct : Sess ionKey

−−Va : Nonce

TimeStamp = 0 . . 3

MaxRunTime = 2

InverseKeys = (Kct , Kct)

#Functions

symbol ic SKey

#System

INITIATOR(Cl i en t)

RESPONDER(TGServer)

RESPONDER(AuthServer)

#Int ruder In format ion

Int ruder = Mallory

IntruderKnowledge = {Cl ient , Mallory , AuthServer , SKey(Mallory) }

Guessable = SessionKey

Crackable = SessionKey

Crackable = SecretKey

Crackable = Password

D.2 Kerberos (2 of 2)

−− Kerberos 5 p ro to co l (part 2/2) by Seok B. Yun

−−−−−−−−−−−−−−−−−−−−−−

−− Purpose : keep sec racy between AS<−>TGS<−>DS

−− Abbrev iat ions

−−−−−−−−−−−−−−−−

−− C : c l i e n t

−− DS : Data Server

−− TGS : Ticket Granting Server

73

−− AS : Authent icat ion Server

−− Addr : address (not used)

−− L i f e : l i f e t im e o f t i c k e t (not used)

−− Key(x) : x ’ s p r i va t e key

−− Kxy : Se s s i on Key f o r x and y

−− Txy : x ’ s t i c k e t to use y

−− Ax : Authent icator f o r x

−− Ticket De f i n i t i o n

−−−−−−−−−−−−−−−−−−−−

−− {DS, C, Addr , timestamp , l i f e , Ksc}Key(DS)

−− Authent icator De f i n i t i o n

−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− {C, Addr , timestamp}Ksc

−−−−−−−−−−−−−−−−−

−− CODE STARTS −−

−−−−−−−−−−−−−−−−−

#Protoco l d e s c r i p t i o n

−− 3 . Gett ing Se rv i c e Ticket s (C <− TGS)

−−

0 . −> C : kct , DS

1 . −> TGS : C, DS, kct

3 . TGS −> C : {C, DS, ts1 , kcs }{SKey(DS) } % Tcs

4 . TGS −> C : { kcs }{ kct }

−− 4 . Request ing a Data Se rv i c e

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

5 . C −> DS : Tcs % {C, DS, ts1 , kcs }{SKey(DS) }

[t s1==now or t s1+1==now]

6 . C −> DS : {C, t s2 }{ kcs }

74

[t s2==now or t s2+1==now]

#Free v a r i a b l e s

C, TGS, DS : Agent

SKey : Agent −> SecretKey

kct , kcs : SessionKey

ts1 , t s2 : TimeStamp

InverseKeys = (SKey , SKey) , (kct , kct) , (kcs , kcs)

#Proce s s e s

INITIATOR(C) knows SKey(C)

RESPONDER(DS) knows SKey(DS)

SERVER(TGS) knows SKey(DS) gene ra t e s kcs

#Sp e c i f i c a t i o n

Agreement (TGS, C, [])

TimedAgreement (C, DS, 2 , [])

#Actual v a r i a b l e s

Cl ient , TGServer , DataServer , Mallory : Agent

Kct , Kcs : SessionKey

TimeStamp = 0 . . 3

MaxRunTime = 2

InverseKeys = (Kct , Kct) , (Kcs , Kcs)

#Functions

symbol ic SKey

#System

INITIATOR(Cl i en t)

RESPONDER(DataServer)

RESPONDER(TGServer)

75

#Intruder In format ion

Int ruder = Mallory

IntruderKnowledge = {Cl ient , Mallory , TGServer , DataServer , SKey(Mallory) }

Guessable = SessionKey

Crackable = SessionKey

Crackable = SecretKey

Crackable = Password

D.3 PERMIS (1 of 3)

−− Permis Author i zat ion p ro to co l (part 1/3) by Seok B. Yun

−−−−−−−−−−−−−−−−−−−−−−

−− Purpose : keep sec racy between SPDP<−>CIS

−− Al l p ro to co l should be undertaken by TLS/SSL

−− Abbrev iat ions

−−−−−−−−−−−−−−−−

−− CPEP : C l i en t PEP

−− SPDP : Subject PDP

−− CIS : Credent i a l I s s u i n g Server

−− TPEP : Target PEP

−− r s c : r e s ou r c e f i e l d (Att r ibute id , value , data type)

−− wst : WS−TRUST token

−− PK(x) : x ’ s pub l i c key

−− SK(x) : x ’ s s e c r e t key

−−−−−−−−−−−−−−−−−

−− CODE STARTS −−

−−−−−−−−−−−−−−−−−

#Protoco l d e s c r i p t i o n

−− 1 . Author i zat ion Request (CPEP <−> SPDP)

76

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

0 . −> CPEP : SPDP

1 . CPEP −> SPDP : {SPDP, r s c }{PK(SPDP) }

2 . −> SPDP : CIS

3 . SPDP −> CPEP : { rsc , SPDP, f (rsc , SPDP) }{PK(CIS) } % cred1 , CIS

−− 2 . Credent i a l Request (CPEP <−> CIS)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

4 . CPEP −> CIS : cred1 % { rsc , SPDP, f (rsc , SPDP) }{PK(CIS) }

5 . −> CIS : wst , TPEP

6 . CIS −> CPEP : { f (wst , CIS) }{PK(TPEP) } % wstrusthash

#Free v a r i a b l e s

CPEP, SPDP, CIS , TPEP: Agent

f : HashFunction

rsc , wst : Nonce

PK: Agent −> PublicKey

SK: Agent −> SecretKey

InverseKeys = (PK, SK)

#Proce s s e s

INITIATOR(CPEP, r s c) knows PK, SK(CPEP)

RESPONDER(CIS , wst) knows PK, SK(CIS)

SERVER(SPDP) knows PK, SK(SPDP)

#Sp e c i f i c a t i o n

Sec r e t (SPDP, rsc , [CIS , CPEP])

Sec r e t (CIS , wst , [SPDP, CPEP])

−− Agreement between Subject PDP and Credent i a l I s s u i n g Server

−−

Agreement (SPDP, CIS , [])

#Actual v a r i a b l e s

77

ClientPEP , SubjectPDP , CredIS , Mallory : Agent

Rsc , Wst : Nonce

#Functions

symbol ic PK, SK

#System

INITIATOR(ClientPEP , Rsc)

RESPONDER(CredIS , Wst)

SERVER(SubjectPDP)

#Int ruder In format ion

Int ruder=Mallory

IntruderKnowledge={ClientPEP , SubjectPDP , CredIS , Mallory }

D.4 PERMIS (2 of 3)

−− Permis Author i zat ion p ro to co l (part 2/3) by Seok B. Yun

−−−−−−−−−−−−−−−−−−−−−−

−− Purpose : keep sec racy between CPEP<−>CVS

−− Al l p ro to co l should be undertaken by TLS/SSL

−− Abbrev iat ions

−−−−−−−−−−−−−−−−

−− CPEP : C l i en t PEP

−− CVS : Credent i a l Va l idat i on Server

−− TPEP : Target PEP

−− r s c : r e s ou r c e f i e l d (Att r ibute id , value , data type)

−− wst : WS−TRUST token

−− PK(x) : x ’ s pub l i c key

−− SK(x) : x ’ s s e c r e t key

78

−−−−−−−−−−−−−−−−−

−− CODE STARTS −−

−−−−−−−−−−−−−−−−−

#Protoco l d e s c r i p t i o n

−− 3 . Author i zat ion Request (CPEP <−> TPEP)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

0 . −> CPEP : TPEP, rsc , wst , CIS , CVS, f (wst , CIS)

1 . CPEP −> TPEP : { rsc , CPEP}{PK(TPEP) }

2 . CPEP −> TPEP : { f (wst , CIS) }{PK(CVS) } % wstrusthash

−− 4 . Credent i a l Request (TPEP <−> CVS)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

3 . −> TPEP : CVS

4 . −> CVS : wst , CIS , na

5 . TPEP −> CVS : wstrusthash % { f (wst , CIS) }{PK(CVS) }

7 . CVS −> TPEP : {na}{PK(TPEP) }

#Free v a r i a b l e s

CPEP, TPEP, CVS, CIS : Agent

f : HashFunction

rsc , wst , na : Nonce

PK: Agent −> PublicKey

SK: Agent −> SecretKey

InverseKeys = (PK, SK)

#Proce s s e s

INITIATOR(CPEP) knows PK, SK(CPEP)

RESPONDER(CVS) knows PK, SK(CVS)

SERVER(TPEP) knows PK, SK(TPEP)

#Sp e c i f i c a t i o n

Sec r e t (CPEP, rsc , [TPEP])

Sec r e t (CPEP, wst , [CVS])

79

#Actual v a r i a b l e s

ClientPEP , TargetPEP , CredVS , CredIS , Mallory : Agent

Rsc , Wst , Na : Nonce

#Functions

symbol ic PK, SK

#System

INITIATOR(ClientPEP)

RESPONDER(CredVS)

SERVER(TargetPEP)

#Int ruder In format ion

Int ruder=Mallory

IntruderKnowledge={ClientPEP , TargetPEP , CredVS , Mallory }

D.5 PERMIS (3 of 3)

−− Permis Author i zat ion p ro to co l (part 2/3) by Seok B. Yun

−−−−−−−−−−−−−−−−−−−−−−

−− Purpose : keep sec racy between CPEP<−>CVS

−− Al l p ro to co l should be undertaken by TLS/SSL

−− Abbrev iat ions

−−−−−−−−−−−−−−−−

−− CPEP : C l i en t PEP

−− TPEP : Target PEP

−− OPDP : Object PDP

−− r s c : r e s ou r c e f i e l d (Att r ibute id , value , data type)

−− wst : WS−TRUST token

−− PK(x) : x ’ s pub l i c key

−− SK(x) : x ’ s s e c r e t key

80

−−−−−−−−−−−−−−−−−

−− CODE STARTS −−

−−−−−−−−−−−−−−−−−

#Protoco l d e s c r i p t i o n

−− 5 . S e rv i c e Request (CPEP −> TPEP −> OPDP)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

0 . −> CPEP : TPEP, r s c

1 . CPEP −> TPEP : { rsc , CPEP}{PK(TPEP) }

2 . −> TPEP : OPDP

3 . −> OPDP : na

4 . TPEP −> OPDP : { rsc , CPEP}{PK(OPDP) }

−− 6 . S e rv i c e Enable (CPEP −> TPEP −> OPDP)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

5 . OPDP −> TPEP : {na , CPEP}{PK(TPEP) }

6 . TPEP −> CPEP : {na}{PK(CPEP) }

#Free v a r i a b l e s

CPEP, TPEP, OPDP : Agent

rsc , na : Nonce

PK: Agent −> PublicKey

SK: Agent −> SecretKey

InverseKeys = (PK, SK)

#Proce s s e s

INITIATOR(CPEP) knows PK, SK(CPEP)

RESPONDER(OPDP, r s c) knows PK, SK(OPDP)

SERVER(TPEP) knows PK, SK(TPEP)

#Sp e c i f i c a t i o n

Sec r e t (OPDP, rsc , [TPEP, CPEP])

Sec r e t (OPDP, na , [CPEP, TPEP])

81

#Actual v a r i a b l e s

ClientPEP , TargetPEP , ObjectPDP , Mallory : Agent

Rsc , Na : Nonce

#Functions

symbol ic PK, SK

#System

INITIATOR(ClientPEP)

RESPONDER(ObjectPDP , Rsc)

SERVER(TargetPEP)

#Int ruder In format ion

Int ruder=Mallory

IntruderKnowledge={ClientPEP , TargetPEP , ObjectPDP , Mallory }

D.6 Shibboleth

−− Shibbo leth p ro to co l by Seok B. Yun

−−−−−−−−−−−−−−−−−−−−−−

−− Just cook i e i s used f o r a l l .

−− Abbrev iat ions

−−−−−−−−−−−−−−−−

−− C : Cl i en t

−− SP : Se rv i c e Provider

−− IP : I d en t i t y Provider

−− PK(x) : x ’ s pub l i c key

−− SK(x) : x ’ s s e c r e t key

−−−−−−−−−−−−−−−−−

−− CODE STARTS −−

82

−−−−−−−−−−−−−−−−−

#Protoco l d e s c r i p t i o n

0 . −> C : SP

1 . C −> SP : {SP , na}{PK(SP) }

2 . −> SP : IP

3 . SP −> C : {na , SP , f (na , SP) }{PK(IP) } % cookie1 , IP

4 . C −> IP : cook i e1 % {na , SP , f (na , SP) }{PK(IP) }

5 . −> IP : nb

6 . IP −> C : {nb , IP , f (nb , IP) }{PK(SP) } % cook ie2

7 . C −> SP : cook i e2 % {nb , IP , f (nb , IP) }{PK(SP) }

#Free v a r i a b l e s

C, SP , IP : Agent

f : HashFunction

na , nb : Nonce

PK: Agent −> PublicKey

SK: Agent −> SecretKey

InverseKeys = (PK, SK)

#Proce s s e s

INITIATOR(C, na) knows PK, SK(C)

RESPONDER(SP , nb) knows PK, SK(SP)

SERVER(IP) knows PK, SK(IP)

#Sp e c i f i c a t i o n

Sec r e t (SP , na , [IP])

Sec r e t (IP , nb , [SP])

Agreement (SP , IP , [])

Agreement (IP , SP , [])

#Actual v a r i a b l e s

Cl ient , Se rv i ceProv ider , Ident i tyProv ide r , Mallory : Agent

Na , Nb: Nonce

83

#Functions

symbol ic PK, SK

#System

INITIATOR(Cl ient , Na)

RESPONDER(Serv i ceProv ider , Nb)

SERVER(Iden t i t yProv ide r)

#Int ruder In format ion

Int ruder=Mallory

IntruderKnowledge={Cl ient , Se rv i ceProv ider , Ident i tyProv ide r , Mallory }

84

Bibliography

[1] Failure divergence refinement 2 (http://www.fsel.com/).

[2] Freshmeat: Release summaries of parallel virtual file system version 2.7.1
(http://freshmeat.net/projects/pvfs).

[3] Gpfs v3.1administration and programming reference.

[4] Differences between saml 2.0 and 1.1(http://saml.xml.org/differences-between-saml-2-
0-and-1-1), jan 2008.

[5] ISO/IEC TR 14516:2002. ISO/IEC TR 14516:2002, Information technology – Security
techniques – Guidelines for the use and management of Trusted Third Party services.
ISO, Geneva, Switzerland, 2002.

[6] Scott W. Ambler. Uml 2 sequence diagram
(http://www.agilemodeling.com/artifacts/sequencediagram.htm).

[7] Donald Bell. Uml basics: The sequence diagram
(http://www.ibm.com/developerworks/rational/library/3101.html), February 2004.

[8] Matt Blaze, Matt Blaze, Joan Feigenbaum, and Jack” Lacy. Decentralized trust man-
agement. IN PROCEEDINGS OF THE 1996 IEEE SYMPOSIUM ON SECURITY
AND PRIVACY, pages 164–173, 1996.

[9] Hong bo Xie, Yuan chen Wu, and Ming tian Zhou. A directed graph-based authen-
tication protocol model and its security analysis. In Frontier of Computer Science
and Technology, 2006. FCST ’06. Japan-China Joint Workshop on, pages 89 –96, nov.
2006.

[10] R. R Brooks. Disruptive security technologies with mobile code and peer-to-peer net-
works. CRC Press, Boca Raton, 2004.

[11] G. Caronni. Walking the web of trust. In Enabling Technologies: Infrastructure for
Collaborative Enterprises, 2000. (WET ICE 2000). Proeedings. IEEE 9th International
Workshops on, pages 153 –158, 2000.

[12] D. W. Chadwick. Modular permis project: What is permis?
(http://sec.cs.kent.ac.uk/permis/documents/concept.shtml), July 2011.

85

[13] David Chadwick. Functional components of grid service provider authorisation service.
MIDDLEWARE”, OGF GWD-I, nov. 2009.

[14] David Chadwick, Gansen Zhao, Sassa Otenko, Romain Laborde, Linying Su, and
Tuan Anh Nguyen. Permis: a modular authorization infrastructure. Concurrency
and Computation: Practice and Experience, 20(11):1341–1357, 2008.

[15] David W. Chadwick and Alexander Otenko. The permis x.509 role based privilege
management infrastructure. Future Generation Computer Systems, 19(2):277 – 289,
2003.

[16] Li Chen and Mingxia Shi. Security analysis and improvement of yahalom protocol. In
Industrial Electronics and Applications, 2008. ICIEA 2008. 3rd IEEE Conference on,
pages 1137 –1140, june 2008.

[17] Li Chen and Weixian Wang. An improved nssk protocol and its security analysis based
on logic approach. In Communications, Circuits and Systems, 2008. ICCCAS 2008.
International Conference on, pages 772 –775, may 2008.

[18] T. Coffey and P. Saidha. Logic for verifying public-key cryptographic protocols. Com-
puters and Digital Techniques, IEE Proceedings -, 144(1):28 –32, jan 1997.

[19] R. Corin and A. Saptawijaya. A logic for constraint-based security protocol analysis.
In Security and Privacy, 2006 IEEE Symposium on, pages 14 pp. –168, may 2006.

[20] R David and H Alla. Petri Nets and Grafcet: Tools for Modelling Discrete Event
Systems. Prince Hall, 1992.

[21] Linying Su David Chadwick. Use of ws-trust and saml to access a credential validation
service. MIDDLEWARE”, OGF GWD-I, nov. 2009.

[22] Romain Laborde David Chadwick, Linying Su. Use of xacml request context to obtain
an authorisation decision. MIDDLEWARE”, OGF GWD-I, nov. 2009.

[23] Juan Deng. Connected Vehicle Information Assurance. Phd dissertation, Clemson
University, Clemson SC 29634, August 2011.

[24] Marlena Erdos, Marlena Erdos, and Scott” Cantor. Shibboleth-architecture draft v05
draft-internet2-shibboleth-architecture-05.html. 2002.

[25] Kai Fan, Hui Li, and Yue Wang. Security analysis of the kerberos protocol using
ban logic. In Information Assurance and Security, 2009. IAS ’09. Fifth International
Conference on, volume 2, pages 467 –470, aug. 2009.

[26] Gombás Gábor, Gombás Gábor, and Témavezető Frohner” Ákos. Evaluation of dis-
tributed authentication, authorization and directory services.

[27] Jill Gemmill, John-Paul Robinson, Tom Scavo, and Purushotham Bangalore. Cross-
domain authorization for federated virtual organizations using the myvocs collabora-
tion environment. Concurrency and Computation: Practice and Experience, 21(4):509–
532, 2009.

86

[28] C. A. R. Hoare. Communicating sequential processes. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1985.

[29] Wei Jie, Junaid Arshad, Richard Sinnott, Paul Townend, and Zhou Lei. A review of
grid authentication and authorization technologies and support for federated access
control. ACM Comput. Surv., 43(2):12:1–12:26, February 2011.

[30] Richard R. Brooks Juan Deng. From csp to petri net: A complete security protocol
analysis profile.

[31] Richard M. Karp and Raymond E. Miller. Parallel program schemata. Journal of
Computer and System Sciences, 3(2):147 – 195, 1969.

[32] G. Lowe. Casper: a compiler for the analysis of security protocols. In Computer
Security Foundations Workshop, 1997. Proceedings., 10th, pages 18 –30, jun 1997.

[33] G. Lowe and B. Roscoe. Using csp to detect errors in the tmn protocol. Software
Engineering, IEEE Transactions on, 23(10):659 –669, oct 1997.

[34] Gavin Lowe. Casper: A compiler for the analysis of security protocols.

[35] W. Mao and C. Boyd. Towards formal analysis of security protocols. In Computer
Security Foundations Workshop VI, 1993. Proceedings, pages 147 –158, jun 1993.

[36] David E. Martin. Shibboleth : An open source, federated single sign-on system. mar-
tinde@northwestern.edu, mar 2009.

[37] C. Metz. Aaa protocols: authentication, authorization, and accounting for the internet.
Internet Computing, IEEE, 3(6):75 –79, nov/dec 1999.

[38] Sun Microsystems. Designing an xml data structure.

[39] S. P. Miller, S. P. Miller, B. C. Neuman, J. I. Schiller, and J. H.” Saltzer. Kerberos au-
thentication and authorization system. IN PROJECT ATHENA TECHNICAL PLAN,
1987.

[40] Y. Nakamura, M. Tatsubori, T. Imamura, and K. Ono. Model-driven security based on
a web services security architecture. In Services Computing, 2005 IEEE International
Conference on, volume 1, pages 7 – 15 vol.1, july 2005.

[41] Roger M. Needham and Michael D. Schroeder. Using encryption for authentication in
large networks of computers. Commun. ACM, 21(12):993–999, December 1978.

[42] Mark Needleman. The shibboleth authentication/authorization system. Serials Review,
30(3):252 – 253, 2004.

[43] B.C. Neuman and T. Ts’o. Kerberos: an authentication service for computer networks.
Communications Magazine, IEEE, 32(9):33 –38, sep 1994.

[44] OASIS. Oasis security services use cases and requirements (http://www.oasis-
open.org/committees/security/docs/draft-sstc-use-strawman-03.html), February 2001.

87

[45] R.A. Oldfield, L. Ward, R. Riesen, A.B. Maccabe, P. Widener, and T. Kordenbrock.
Lightweight i/o for scientific applications. In Cluster Computing, 2006 IEEE Interna-
tional Conference on, pages 1 –11, sept. 2006.

[46] R.A. Oldfield, P. Widener, A.B. Maccabe, L. Ward, and T. Kordenbrock. Efficient
data-movement for lightweight i/o. In Cluster Computing, 2006 IEEE International
Conference on, pages 1 –9, sept. 2006.

[47] A. W. Roscoe. The theory and practice of concurrency. Prentice Hall, 1998.
The text book teaching material can be found at http://www.comlab.ox.ac.uk/

publications/books/concurrency/.

[48] A.W. Roscoe. Modelling and verifying key-exchange protocols using csp and fdr. In
Computer Security Foundations Workshop, 1995. Proceedings., Eighth IEEE, pages 98
–107, jun 1995.

[49] P. Ryan and S. Schneider. The modelling and analysis of security protocols: the csp
approach. Addison-Wesley Professional, first edition, 2000.

[50] Frank Schmuck and Roger Haskin. Gpfs: A shared-disk file system for large com-
puting clusters. In Proceedings of the 1st USENIX Conference on File and Storage
Technologies, FAST ’02, Berkeley, CA, USA, 2002. USENIX Association.

[51] S. Schneider. Security properties and csp. In Security and Privacy, 1996. Proceedings.,
1996 IEEE Symposium on, pages 174 –187, may 1996.

[52] Steve Schneider. Concurrent and real-time systems: the CSP approach. Worldwide
series in computer science. Wiley, Chichester, 2000.

[53] H.R. Shahriari and R. Jalili. Using csp to model and analyze transmission control pro-
tocol vulnerabilities within the broadcast network. In Networking and Communication
Conference, 2004. INCC 2004. International, pages 42 – 47, june 2004.

[54] Frederick T. Sheldon. Analysis of real-time concurrent system models based on csp
using stochastic petri nets. In Proceedings of the 12th European Simulation Multicon-
ference on Simulation - Past, Present and Future, pages 776–783. SCS Europe, 1998.

[55] T. Srivatanakul, J.A. Clark, S. Stepney, and F. Polack. Challenging formal specifica-
tions by mutation: a csp security example. In Software Engineering Conference, 2003.
Tenth Asia-Pacific, pages 340 – 350, dec. 2003.

[56] Jennifer G Steiner, Clifford Neuman, and Jeffrey I Schiller. Kerberos: An authen-
tication service for open network systems. Winter 1988 USENIX Conference, pages
191–202, 1988.

[57] Li Tingyuan, Liu Xiaodong, Qin Zhiguang, and Zhang Xuanfang. Formal analysis for
security of otway-rees protocol with ban logic. In Database Technology and Applica-
tions, 2009 First International Workshop on, pages 590 –593, april 2009.

88

http://www.comlab.ox.ac.uk/publications/books/concurrency/
http://www.comlab.ox.ac.uk/publications/books/concurrency/

[58] Li Tingyuan, Liu Xiaodong, Qin Zhiguang, and Zhang Xuanfang. An improved se-
curity protocol formal analysis with ban logic. In Electronic Commerce and Business
Intelligence, 2009. ECBI 2009. International Conference on, pages 102 –105, june 2009.

[59] Tom Scavo Valerio Venturi. Use of saml to retrieve authorization credentials. MID-
DLEWARE”, OGF GWD-I, nov. 2009.

[60] Hao Yin, Hao Yin, Sofia Brenes Barahona, Donald F. Mcmullen, Marlon Pierce,
Kianosh Huffman, and Geoffrey” Fox. A permis-based authorization solution between
portlets and back-end web services.

89

	Title Page
	Abstract
	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Assumptions

	Related Work
	Distributed File Systems
	Related security art
	Distributed systems authentication

	Security Verification
	Casper
	CSP
	FDR

	Performance Evaluation
	Petri nets
	Similarity between CSP and Petri net
	Reachability and Karp Miller Trees
	Connectivity Matrix
	Deadlocks and Livelocks
	Bottleneck Analysis

	Distributed Authentication and Authorization
	Kerberos
	PERMIS
	Shibboleth

	Implementation
	UML sequence diagram
	Security verification
	Performance Evaluation

	Test Results
	Security test result

	Conclusions and Future Work
	Appendices
	Security Test Results on FDR
	Petri Net Graphs
	Karp-Miller Trees Graphs
	Casper Scripts

	Bibliography

